Papers
Topics
Authors
Recent
Search
2000 character limit reached

RILQ: Rank-Insensitive LoRA-based Quantization Error Compensation for Boosting 2-bit Large Language Model Accuracy

Published 2 Dec 2024 in cs.LG and cs.AI | (2412.01129v3)

Abstract: Low-rank adaptation (LoRA) has become the dominant method for parameter-efficient LLM fine-tuning, with LoRA-based quantization error compensation (LQEC) emerging as a powerful tool for recovering accuracy in compressed LLMs. However, LQEC has underperformed in sub-4-bit scenarios, with no prior investigation into understanding this limitation. We propose RILQ (Rank-Insensitive LoRA-based Quantization Error Compensation) to understand fundamental limitation and boost 2-bit LLM accuracy. Based on rank analysis revealing model-wise activation discrepancy loss's rank-insensitive nature, RILQ employs this loss to adjust adapters cooperatively across layers, enabling robust error compensation with low-rank adapters. Evaluations on LLaMA-2 and LLaMA-3 demonstrate RILQ's consistent improvements in 2-bit quantized inference across various state-of-the-art quantizers and enhanced accuracy in task-specific fine-tuning. RILQ maintains computational efficiency comparable to existing LoRA methods, enabling adapter-merged weight-quantized LLM inference with significantly enhanced accuracy, making it a promising approach for boosting 2-bit LLM performance. Our code is available at https://github.com/aiha-lab/RILQ.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.