Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Cross-Corpus Speech Emotion Recognition Method Based on Supervised Contrastive Learning (2411.19803v1)

Published 25 Nov 2024 in cs.SD, cs.CL, and eess.AS

Abstract: Research on Speech Emotion Recognition (SER) often faces challenges such as the lack of large-scale public datasets and limited generalization capability when dealing with data from different distributions. To solve this problem, this paper proposes a cross-corpus speech emotion recognition method based on supervised contrast learning. The method employs a two-stage fine-tuning process: first, the self-supervised speech representation model is fine-tuned using supervised contrastive learning on multiple speech emotion datasets; then, the classifier is fine-tuned on the target dataset. The experimental results show that the WavLM-based model achieved unweighted accuracy (UA) of 77.41% on the IEMOCAP dataset and 96.49% on the CASIA dataset, outperforming the state-of-the-art results on the two datasets.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com