Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multilinear fractional maximal and integral operators with homogeneous kernels, Hardy--Littlewood--Sobolev and Olsen-type inequalities (2411.19676v1)

Published 29 Nov 2024 in math.CA

Abstract: Let $m\in \mathbb{N}$ and $0<\alpha<mn$.In this paper, we will use the idea of Hedberg to reprove that the multilinear operators $\mathcal{T}{\Omega,\alpha;m}$ and $\mathcal{M}{\Omega,\alpha;m}$ are bounded from $L{p_1}(\mathbb Rn)\times L{p_2}(\mathbb Rn)\times\cdots\times L{p_m}(\mathbb Rn)$ into $Lq(\mathbb Rn)$ provided that $\vec{\Omega}=(\Omega_1,\Omega_2,\dots,\Omega_m)\in Ls(\mathbf{S}{n-1})$, $s'<p_1,p_2,\dots,p_m<n/{\alpha}$, \begin{equation*} \frac{\,1\,}{p}=\frac{1}{p_1}+\frac{1}{p_2}+\cdots+\frac{1}{p_m} \quad \mbox{and} \quad \frac{\,1\,}{q}=\frac{\,1\,}{p}-\frac{\alpha}{n}. \qquad () \end{equation} We also prove that under the assumptions that $\vec{\Omega}=(\Omega_1,\Omega_2,\dots,\Omega_m)\in Ls(\mathbf{S}{n-1})$, $s'\leq p_1,p_2,\dots,p_m<n/{\alpha}$ and $()$, the multilinear operators $\mathcal{T}{\Omega,\alpha;m}$ and $\mathcal{M}{\Omega,\alpha;m}$ are bounded from $L{p_1}(\mathbb Rn)\times L{p_2}(\mathbb Rn)\times \cdots\times L{p_m}(\mathbb Rn)$ into $L{q,\infty}(\mathbb Rn)$, which are completely new. Moreover, we will use the idea of Adams to show that $\mathcal{T}{\Omega,\alpha;m}$ and $\mathcal{M}{\Omega,\alpha;m}$ are bounded from $L{p_1,\kappa}(\mathbb Rn)\times L{p_2,\kappa}(\mathbb Rn)\times \cdots\times L{p_m,\kappa}(\mathbb Rn)$ into $L{q,\kappa}(\mathbb Rn)$ whenever $s'<p_1,p_2,\dots,p_m<n/{\alpha}$, $0<\kappa<1$, \begin{equation} \frac{\,1\,}{p}=\frac{1}{p_1}+\frac{1}{p_2}+\cdots+\frac{1}{p_m} \quad \mbox{and} \quad \frac{\,1\,}{q}=\frac{\,1\,}{p}-\frac{\alpha}{n(1-\kappa)},\qquad () \end{equation*} and also bounded from $L{p_1,\kappa}(\mathbb Rn)\times L{p_2,\kappa}(\mathbb Rn)\times \cdots\times L{p_m,\kappa}(\mathbb Rn)$ into $WL{q,\kappa}(\mathbb Rn)$ whenever $s'\leq p_1,p_2,\dots,p_m<n/{\alpha}$, $0<\kappa<1$ and $()$.

Summary

We haven't generated a summary for this paper yet.