Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predictive Power of LLMs in Financial Markets (2411.16569v1)

Published 25 Nov 2024 in q-fin.PM and q-fin.CP

Abstract: Predicting the movement of the stock market and other assets has been valuable over the past few decades. Knowing how the value of a certain sector market may move in the future provides much information for investors, as they use that information to develop strategies to maximize profit or minimize risk. However, market data are quite noisy, and it is challenging to choose the right data or the right model to create such predictions. With the rise of LLMs, there are ways to analyze certain data much more efficiently than before. Our goal is to determine whether the GPT model provides more useful information compared to other traditional transformer models, such as the BERT model. We shall use data from the Federal Reserve Beige Book, which provides summaries of economic conditions in different districts in the US. Using such data, we then employ the LLM's to make predictions on the correlations. Using these correlations, we then compare the results with well-known strategies and determine whether knowing the economic conditions improves investment decisions. We conclude that the Beige Book does contain information regarding correlations amongst different assets, yet the GPT model has too much look-ahead bias and that traditional models still triumph.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com