Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bow Metrics and Hyperbolicity (2411.16548v1)

Published 25 Nov 2024 in math.CO, cs.DM, and cs.DS

Abstract: A ($\lambda,\mu$)-bow metric was defined in (Dragan & Ducoffe, 2023) as a far reaching generalization of an $\alpha_i$-metric (which is equivalent to a ($0,i$)-bow metric). A graph $G=(V,E)$ is said to satisfy ($\lambda,\mu$)-bow metric if for every four vertices $u,v,w,x$ of $G$ the following holds: if two shortest paths $P(u,w)$ and $P(v,x)$ share a common shortest subpath $P(v,w)$ of length more than $\lambda$ (that is, they overlap by more than $\lambda$), then the distance between $u$ and $x$ is at least $d_G(u,v)+d_G(v,w)+d_G(w,x)-\mu$. ($\lambda,\mu$)-Bow metric can also be considered for all geodesic metric spaces. It was shown by Dragan & Ducoffe that every $\delta$-hyperbolic graph (in fact, every $\delta$-hyperbolic geodesic metric space) satisfies ($\delta, 2\delta$)-bow metric. Thus, ($\lambda,\mu$)-bow metric is a common generalization of hyperbolicity and of $\alpha_i$-metric. In this paper, we investigate an intriguing question whether ($\lambda,\mu$)-bow metric implies hyperbolicity in graphs. Note that, this is not the case for general geodesic metric spaces as Euclidean spaces satisfy ($0,0$)-bow metric whereas they have unbounded hyperbolicity. We conjecture that, in graphs, ($\lambda,\mu$)-bow metric indeed implies hyperbolicity and show that our conjecture is true for several large families of graphs.

Summary

We haven't generated a summary for this paper yet.