Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On an eigenvalue problem associated with mixed operators under mixed boundary conditions (2411.16499v1)

Published 25 Nov 2024 in math.AP

Abstract: In this paper, we study a class of eigenvalue problems involving both local as well as nonlocal operators, precisely the classical Laplace operator and the fractional Laplace operator in the presence of mixed boundary conditions, that is \begin{equation} \label{1} \left{\begin{split} \mathcal{L}u: &= \lambda u,u>0~ \text{in} ~\Omega, u&=0\text{in} {Uc}, \mathcal{N}_s(u)&=0 ~~\text{in} ~~{\mathcal{N}}, \frac{\partial u}{\partial \nu}&=0 ~~\text{in} \partial \Omega \cap \overline{\mathcal{N}}, \end{split} \right.\tag{$P_\lambda$} \end{equation} where $U= (\Omega \cup {\mathcal{N}} \cup (\partial\Omega\cap\overline{\mathcal{N}}))$, $\Omega \subseteq \mathbb{R}n$ is a non empty open set, $\mathcal{D}$, $\mathcal{N}$ are open subsets of $\mathbb{R}n\setminus{\bar{\Omega }}$ such that $\overline{{\mathcal{D}} \cup {\mathcal{N}}}= \mathbb{R}n\setminus{\Omega}$, $\mathcal{D} \cap {\mathcal{N}}= \emptyset $ and $\Omega\cup \mathcal{N}$ is a bounded set with smooth boundary, $\lambda >0$ is a real parameter and $$\mathcal{L}= -\Delta+(-\Delta){s},~ \text{for}~s \in (0, 1).$$ We establish the existence and some characteristics of the first eigenvalue and associated eigenfunctions to the above problem, based on the topology of the sets $\mathcal{D}$ and $\mathcal{N}$. Next, we apply these results to establish bifurcation type results, both from zero and infinity for the problem \eqref{ql} which is an asymptotically linear problem inclined with $(P_\lambda)$.

Summary

We haven't generated a summary for this paper yet.