Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Closed-form solutions of the nonlinear Schrödinger equation with arbitrary dispersion and potential (2411.13713v2)

Published 20 Nov 2024 in nlin.SI, math-ph, math.AP, and math.MP

Abstract: For the first time, the general nonlinear Schr\"odinger equation is investigated, in which the chromatic dispersion and potential are specified by two arbitrary functions. The equation in question is a natural generalization of a wide class of related nonlinear partial differential equations that are often used in various areas of theoretical physics, including nonlinear optics, superconductivity and plasma physics. To construct exact solutions, a combination of the method of functional constraints and methods of generalized separation of variables is used. Exact closed-form solutions of the general nonlinear Schr\"odinger equation, which are expressed in quadratures or elementary functions, are found. One-dimensional non-symmetry reductions are described, which lead the considered nonlinear partial differential equation to a simpler ordinary differential equation or a system of such equations. The exact solutions obtained in this work can be used as test problems intended to assess the accuracy of numerical and approximate analytical methods for integrating nonlinear equations of mathematical physics.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com