Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FASTNav: Fine-tuned Adaptive Small-language-models Trained for Multi-point Robot Navigation (2411.13262v1)

Published 20 Nov 2024 in cs.RO, cs.AI, and cs.HC

Abstract: With the rapid development of LLMs (LLM), robots are starting to enjoy the benefits of new interaction methods that LLMs bring. Because edge computing fulfills the needs for rapid response, privacy, and network autonomy, we believe it facilitates the extensive deployment of large models for robot navigation across various industries. To enable local deployment of LLMs on edge devices, we adopt some model boosting methods. In this paper, we propose FASTNav - a method for boosting lightweight LLMs, also known as small LLMs (SLMs), for robot navigation. The proposed method contains three modules: fine-tuning, teacher-student iteration, and language-based multi-point robot navigation. We train and evaluate models with FASTNav in both simulation and real robots, proving that we can deploy them with low cost, high accuracy and low response time. Compared to other model compression methods, FASTNav shows potential in the local deployment of LLMs and tends to be a promising solution for language-guided robot navigation on edge devices.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets