Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distribution-free Measures of Association based on Optimal Transport (2411.13080v1)

Published 20 Nov 2024 in math.ST, math.PR, stat.ME, and stat.TH

Abstract: In this paper we propose and study a class of nonparametric, yet interpretable measures of association between two random vectors $X$ and $Y$ taking values in $\mathbb{R}{d_1}$ and $\mathbb{R}{d_2}$ respectively ($d_1, d_2\ge 1$). These nonparametric measures -- defined using the theory of reproducing kernel Hilbert spaces coupled with optimal transport -- capture the strength of dependence between $X$ and $Y$ and have the property that they are 0 if and only if the variables are independent and 1 if and only if one variable is a measurable function of the other. Further, these population measures can be consistently estimated using the general framework of geometric graphs which include $k$-nearest neighbor graphs and minimum spanning trees. Additionally, these measures can also be readily used to construct an exact finite sample distribution-free test of mutual independence between $X$ and $Y$. In fact, as far as we are aware, these are the only procedures that possess all the above mentioned desirable properties. The correlation coefficient proposed in Dette et al. (2013), Chatterjee (2021), Azadkia and Chatterjee (2021), at the population level, can be seen as a special case of this general class of measures.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com