Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explicit Two-Sided Vertex Expanders Beyond the Spectral Barrier (2411.11627v1)

Published 18 Nov 2024 in math.CO, cs.CC, cs.DM, and cs.DS

Abstract: We construct the first explicit two-sided vertex expanders that bypass the spectral barrier. Previously, the strongest known explicit vertex expanders were given by $d$-regular Ramanujan graphs, whose spectral properties imply that every small subset of vertices $S$ has at least $0.5d|S|$ distinct neighbors. However, it is possible to construct Ramanujan graphs containing a small set $S$ with no more than $0.5d|S|$ neighbors. In fact, no explicit construction was known to break the $0.5 d$-barrier. In this work, we give an explicit construction of an infinite family of $d$-regular graphs (for large enough $d$) where every small set expands by a factor of $\approx 0.6d$. More generally, for large enough $d_1,d_2$, we give an infinite family of $(d_1,d_2)$-biregular graphs where small sets on the left expand by a factor of $\approx 0.6d_1$, and small sets on the right expand by a factor of $\approx 0.6d_2$. In fact, our construction satisfies an even stronger property: small sets on the left and right have unique-neighbor expansion $0.6d_1$ and $0.6d_2$ respectively. Our construction follows the tripartite line product framework of Hsieh, McKenzie, Mohanty & Paredes, and instantiates it using the face-vertex incidence of the $4$-dimensional Ramanujan clique complex as its base component. As a key part of our analysis, we derive new bounds on the triangle density of small sets in the Ramanujan clique complex.

Summary

We haven't generated a summary for this paper yet.