Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Massively Parallel Maximum Coverage Revisited (2411.11277v2)

Published 18 Nov 2024 in cs.DS and cs.DC

Abstract: We study the maximum set coverage problem in the massively parallel model. In this setting, $m$ sets that are subsets of a universe of $n$ elements are distributed among $m$ machines. In each round, these machines can communicate with each other, subject to the memory constraint that no machine may use more than $\tilde{O}(n)$ memory. The objective is to find the $k$ sets whose coverage is maximized. We consider the regime where $k = \Omega(m)$, $m = O(n)$, and each machine has $\tilde{O}(n)$ memory. Maximum coverage is a special case of the submodular maximization problem subject to a cardinality constraint. This problem can be approximated to within a $1-1/e$ factor using the greedy algorithm, but this approach is not directly applicable to parallel and distributed models. When $k = \Omega(m)$, to obtain a $1-1/e-\epsilon$ approximation, previous work either requires $\tilde{O}(mn)$ memory per machine which is not interesting compared to the trivial algorithm that sends the entire input to a single machine, or requires $2{O(1/\epsilon)} n$ memory per machine which is prohibitively expensive even for a moderately small value $\epsilon$. Our result is a randomized $(1-1/e-\epsilon)$-approximation algorithm that uses $O(1/\epsilon3 \cdot \log m \cdot (\log (1/\epsilon) + \log m))$ rounds. Our algorithm involves solving a slightly transformed linear program of the maximum coverage problem using the multiplicative weights update method, classic techniques in parallel computing such as parallel prefix, and various combinatorial arguments.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Thai Bui (3 papers)
  2. Hoa T. Vu (14 papers)

Summary

We haven't generated a summary for this paper yet.