Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unveiling the Hidden: Online Vectorized HD Map Construction with Clip-Level Token Interaction and Propagation (2411.11002v1)

Published 17 Nov 2024 in cs.CV and cs.AI

Abstract: Predicting and constructing road geometric information (e.g., lane lines, road markers) is a crucial task for safe autonomous driving, while such static map elements can be repeatedly occluded by various dynamic objects on the road. Recent studies have shown significantly improved vectorized high-definition (HD) map construction performance, but there has been insufficient investigation of temporal information across adjacent input frames (i.e., clips), which may lead to inconsistent and suboptimal prediction results. To tackle this, we introduce a novel paradigm of clip-level vectorized HD map construction, MapUnveiler, which explicitly unveils the occluded map elements within a clip input by relating dense image representations with efficient clip tokens. Additionally, MapUnveiler associates inter-clip information through clip token propagation, effectively utilizing long-term temporal map information. MapUnveiler runs efficiently with the proposed clip-level pipeline by avoiding redundant computation with temporal stride while building a global map relationship. Our extensive experiments demonstrate that MapUnveiler achieves state-of-the-art performance on both the nuScenes and Argoverse2 benchmark datasets. We also showcase that MapUnveiler significantly outperforms state-of-the-art approaches in a challenging setting, achieving +10.7% mAP improvement in heavily occluded driving road scenes. The project page can be found at https://mapunveiler.github.io.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com