Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Euclidean High-Order Smooth Convex Optimization (2411.08987v2)

Published 13 Nov 2024 in math.OC, cs.DS, cs.LG, and stat.ML

Abstract: We develop algorithms for the optimization of convex objectives that have H\"older continuous $q$-th derivatives by using a $q$-th order oracle, for any $q \geq 1$. Our algorithms work for general norms under mild conditions, including the $\ell_p$-settings for $1\leq p\leq \infty$. We can also optimize structured functions that allow for inexactly implementing a non-Euclidean ball optimization oracle. We do this by developing a non-Euclidean inexact accelerated proximal point method that makes use of an \emph{inexact uniformly convex regularizer}. We show a lower bound for general norms that demonstrates our algorithms are nearly optimal in high-dimensions in the black-box oracle model for $\ell_p$-settings and all $q \geq 1$, even in randomized and parallel settings. This new lower bound, when applied to the first-order smooth case, resolves an open question in parallel convex optimization.

Summary

We haven't generated a summary for this paper yet.