Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing LRD in the spectral domain for functional time series in manifolds (2411.07731v3)

Published 12 Nov 2024 in math.ST and stat.TH

Abstract: A statistical hypothesis test for long range dependence (LRD) is formulated in the spectral domain for functional time series in manifolds. The elements of the spectral density operator family are assumed to be invariant with respect to the group of isometries of the manifold. The proposed test statistic is based on the weighted periodogram operator. A Central Limit Theorem is derived to obtain the asymptotic Gaussian distribution of the proposed test statistic operator under the null hypothesis. The rate of convergence to zero, in the Hilbert--Schmidt operator norm, of the bias of the integrated empirical second and fourth order cumulant spectral density operators is obtained under the alternative hypothesis. The consistency of the test follows from the consistency of the integrated weighted periodogram operator under LRD. Practical implementation of our testing approach is based on the random projection methodology. A simulation study illustrates, in the context of spherical functional time series, the asymptotic normality of the test statistic under the null hypothesis, and its consistency under the alternative. The empirical size and power properties are also computed for different functional sample sizes, and under different scenarios.

Summary

We haven't generated a summary for this paper yet.