Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explicit symmetric low-regularity integrators for the nonlinear Schrödinger equation (2411.07720v3)

Published 12 Nov 2024 in math.NA and cs.NA

Abstract: The numerical approximation of low-regularity solutions to the nonlinear Schr\"odinger equation is notoriously difficult and even more so if structure-preserving schemes are sought. Recent works have been successful in establishing symmetric low-regularity integrators for this equation. However, so far, all prior symmetric low-regularity algorithms are fully implicit, and therefore require the solution of a nonlinear equation at each time step, leading to significant numerical cost in the iteration. In this work, we introduce the first fully explicit (multi-step) symmetric low-regularity integrators for the nonlinear Schr\"odinger equation. We demonstrate the construction of an entire class of such schemes which notably can be used to symmetrise (in explicit form) a large amount of existing low-regularity integrators. We provide rigorous convergence analysis of our schemes and numerical examples demonstrating both the favourable structure preservation properties obtained with our novel schemes, and the significant reduction in computational cost over implicit methods.

Summary

We haven't generated a summary for this paper yet.