Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On strong posterior contraction rates for Besov-Laplace priors in the white noise model (2411.06981v1)

Published 11 Nov 2024 in math.ST and stat.TH

Abstract: In this article, we investigate the problem of estimating a spatially inhomogeneous function and its derivatives in the white noise model using Besov-Laplace priors. We show that smoothness-matching priors attains minimax optimal posterior contraction rates, in strong Sobolev metrics, over the Besov spaces $B\beta_{11}$, $\beta > d/2$, closing a gap in the existing literature. Our strong posterior contraction rates also imply that the posterior distributions arising from Besov-Laplace priors with matching regularity enjoy a desirable plug-in property for derivative estimation, entailing that the push-forward measures under differential operators optimally recover the derivatives of the unknown regression function. The proof of our results relies on the novel approach to posterior contraction rates, based on Wasserstein distance, recently developed by Dolera, Favaro and Mainini (Probability Theory and Related Fields, 2024). We show how this approach allows to overcome some technical challenges that emerge in the frequentist analysis of smoothness-matching Besov-Laplace priors.

Summary

We haven't generated a summary for this paper yet.