Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A stable multiplicative dynamical low-rank discretization for the linear Boltzmann-BGK equation (2411.06844v1)

Published 11 Nov 2024 in math.NA and cs.NA

Abstract: The numerical method of dynamical low-rank approximation (DLRA) has recently been applied to various kinetic equations showing a significant reduction of the computational effort. In this paper, we apply this concept to the linear Boltzmann-Bhatnagar-Gross-Krook (Boltzmann-BGK) equation which due its high dimensionality is challenging to solve. Inspired by the special structure of the non-linear Boltzmann-BGK problem, we consider a multiplicative splitting of the distribution function. We propose a rank-adaptive DLRA scheme making use of the basis update & Galerkin integrator and combine it with an additional basis augmentation to ensure numerical stability, for which an analytical proof is given and a classical hyperbolic Courant-Friedrichs-Lewy (CFL) condition is derived. This allows for a further acceleration of computational times and a better understanding of the underlying problem in finding a suitable discretization of the system. Numerical results of a series of different test examples confirm the accuracy and efficiency of the proposed method compared to the numerical solution of the full system.

Summary

We haven't generated a summary for this paper yet.