Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structural Properties of Hyperuniform Networks (2411.06273v1)

Published 9 Nov 2024 in cond-mat.stat-mech

Abstract: Disordered hyperuniform many-particle systems are recently discovered exotic states of matter, characterized by a complete suppression of normalized infinite-wavelength density fluctuations and lack of conventional long-range order. Here, we begin a program to quantify the structural properties of nonhyperuniform and hyperuniform networks. In particular, large two-dimensional (2D) Voronoi networks (graphs) containing approximately 10,000 nodes are created from a variety of different point configurations, including the antihyperuniform HIP, nonhyperuniform Poisson process, nonhyperuniform RSA saturated packing, and both non-stealthy and stealthy hyperuniform point processes. We carry out an extensive study of the Voronoi-cell area distribution of each of the networks through determining multiple metrics that characterize the distribution, including their higher-cumulants. We show that the HIP distribution is far from Gaussian; the Poisson and non-stealthy hyperuniform distributions are Gaussian-like distributions, the RSA and the highest stealthy hyperuniform distributions are also non-Gaussian, with diametrically opposite non-Gaussian behavior of the HIP. Moreover, we compute the Voronoi-area correlation functions $C_{00}(r)$ for the networks [M. A. Klatt and S. Torquato, Phys. Rev. E {\bf 90}, 052120 (2014)]. We show that the correlation functions $C_{00}(r)$ qualitatively distinguish the antihyperuniform, nonhyperuniform and hyperuniform Voronoi networks. We find strong anticorrelations in $C_{00}(r)$ (i.e., negative values) for the hyperuniform networks.

Summary

We haven't generated a summary for this paper yet.