Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
51 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Aquila-plus: Prompt-Driven Visual-Language Models for Pixel-Level Remote Sensing Image Understanding (2411.06142v1)

Published 9 Nov 2024 in cs.CV and cs.AI

Abstract: The recent development of vision LLMs (VLMs) has led to significant advances in visual-language integration through visual instruction tuning, and they have rapidly evolved in the field of remote sensing image understanding, demonstrating their powerful capabilities. However, existing RSVLMs mainly focus on image-level or frame-level understanding, making it difficult to achieve fine-grained pixel-level visual-language alignment. Additionally, the lack of mask-based instructional data limits their further development. In this paper, we propose a mask-text instruction tuning method called Aquila-plus, which extends the capabilities of RSVLMs to achieve pixel-level visual understanding by incorporating fine-grained mask regions into language instructions. To achieve this, we first meticulously constructed a mask region-text dataset containing 100K samples, and then designed a visual-LLM by injecting pixel-level representations into a LLM. Specifically, Aquila-plus uses a convolutional CLIP as the visual encoder and employs a mask-aware visual extractor to extract precise visual mask features from high-resolution inputs. Experimental results demonstrate that Aquila-plus outperforms existing methods in various region understanding tasks, showcasing its novel capabilities in pixel-level instruction tuning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Kaixuan Lu (4 papers)