Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 28 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 236 tok/s Pro
2000 character limit reached

Enhancing Investment Analysis: Optimizing AI-Agent Collaboration in Financial Research (2411.04788v1)

Published 7 Nov 2024 in cs.AI, cs.CL, cs.LG, q-fin.ST, and q-fin.TR

Abstract: In recent years, the application of generative artificial intelligence (GenAI) in financial analysis and investment decision-making has gained significant attention. However, most existing approaches rely on single-agent systems, which fail to fully utilize the collaborative potential of multiple AI agents. In this paper, we propose a novel multi-agent collaboration system designed to enhance decision-making in financial investment research. The system incorporates agent groups with both configurable group sizes and collaboration structures to leverage the strengths of each agent group type. By utilizing a sub-optimal combination strategy, the system dynamically adapts to varying market conditions and investment scenarios, optimizing performance across different tasks. We focus on three sub-tasks: fundamentals, market sentiment, and risk analysis, by analyzing the 2023 SEC 10-K forms of 30 companies listed on the Dow Jones Index. Our findings reveal significant performance variations based on the configurations of AI agents for different tasks. The results demonstrate that our multi-agent collaboration system outperforms traditional single-agent models, offering improved accuracy, efficiency, and adaptability in complex financial environments. This study highlights the potential of multi-agent systems in transforming financial analysis and investment decision-making by integrating diverse analytical perspectives.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.