A nonlinear Calderón-Zygmund $ L^2$-theory for the Dirichlet problem involving $ -|Du|^γΔ^N_p u=f$ (2411.03796v2)
Abstract: We establish a nonlinear Calder\'on-Zygmund $L2$-theory to the Dirichlet problem $$-|Du|{\gamma}\DeltaN_p u=f\in L2(\Omega)\quad {\rm in}\quad \Omega; \quad u=0 \ \mbox{on $\partial\Omega$} $$ for $n\ge2$, $ p>1$ and a large range of $\gamma>-1$, in particular, for all $p>1$ and all $ \gamma>-1$ when $n=2$. Here $\Omega\subset \mathbb{R}n$ is a bounded convex domain, or a bounded Lipschitz domain whose boundary has small weak second fundamental form in the sense of Cianchi-Maz'ya (2018). The proof relies on an extension of an Miranda-Talenti & Cianchi-Maz'ya type inequality, that is, for any $v\in C\infty_0(\Omega)$ in any bounded smooth domain $\Omega$, $|D[(|Dv|2+\epsilon){\frac\gamma 2}Dv]|{L2(\Omega)}$ is bounded via $|(|Dv|2+\epsilon){\frac\gamma 2} \DeltaN{p,\epsilon}v |{L2(\Omega)}$, where $\DeltaN{p,\epsilon}v$ is the $\epsilon$-regularization of normalized $p$-Laplacian. Our results extend the well-known Calder\'on-Zygmund $L2$-estimate for the Poisson equation, a nonlinear global second order Sobolev estimate for inhomogeneous $p$-Laplace equation by Cianchi-Maz'ya (2018), and a local $W{2,2}$-estimate for inhomogeneous normalized $p$-Laplace equation by Attouchi-Ruosteenoja (2018).