Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-model Ensemble Conformal Prediction in Dynamic Environments (2411.03678v1)

Published 6 Nov 2024 in cs.LG

Abstract: Conformal prediction is an uncertainty quantification method that constructs a prediction set for a previously unseen datum, ensuring the true label is included with a predetermined coverage probability. Adaptive conformal prediction has been developed to address data distribution shifts in dynamic environments. However, the efficiency of prediction sets varies depending on the learning model used. Employing a single fixed model may not consistently offer the best performance in dynamic environments with unknown data distribution shifts. To address this issue, we introduce a novel adaptive conformal prediction framework, where the model used for creating prediction sets is selected on the fly from multiple candidate models. The proposed algorithm is proven to achieve strongly adaptive regret over all intervals while maintaining valid coverage. Experiments on real and synthetic datasets corroborate that the proposed approach consistently yields more efficient prediction sets while maintaining valid coverage, outperforming alternative methods.

Summary

We haven't generated a summary for this paper yet.