Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 45 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Pseudorandom Function-like States from Common Haar Unitary (2411.03201v1)

Published 5 Nov 2024 in quant-ph

Abstract: Recent active studies have demonstrated that cryptography without one-way functions (OWFs) could be possible in the quantum world. Many fundamental primitives that are natural quantum analogs of OWFs or pseudorandom generators (PRGs) have been introduced, and their mutual relations and applications have been studied. Among them, pseudorandom function-like state generators (PRFSGs) [Ananth, Qian, and Yuen, Crypto 2022] are one of the most important primitives. PRFSGs are a natural quantum analogue of pseudorandom functions (PRFs), and imply many applications such as IND-CPA secret-key encryption (SKE) and EUF-CMA message authentication code (MAC). However, only known constructions of (many-query-secure) PRFSGs are ones from OWFs or pseudorandom unitaries (PRUs). In this paper, we construct classically-accessible adaptive secure PRFSGs in the invertible quantum Haar random oracle (QHRO) model which is introduced in [Chen and Movassagh, Quantum]. The invertible QHRO model is an idealized model where any party can access a public single Haar random unitary and its inverse, which can be considered as a quantum analog of the random oracle model. Our PRFSG constructions resemble the classical Even-Mansour encryption based on a single permutation, and are secure against any unbounded polynomial number of queries to the oracle and construction. To our knowledge, this is the first application in the invertible QHRO model without any assumption or conjecture. The previous best construction in the idealized model is PRFSGs secure up to o({\lambda}/ log {\lambda}) queries in the common Haar state model [Ananth, Gulati, and Lin, TCC 2024].

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)