Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coboundary expansion of coset complexes (2411.02819v1)

Published 5 Nov 2024 in math.CO, cs.CC, math.AT, and math.GR

Abstract: Coboundary expansion is a high dimensional generalization of the Cheeger constant to simplicial complexes. Originally, this notion was motivated by the fact that it implies topological expansion, but nowadays a significant part of the motivation stems from its deep connection to problems in theoretical computer science such as agreement expansion in the low soundness regime. In this paper, we prove coboundary expansion with non-Abelian coefficients for the coset complex construction of Kaufman and Oppenheim. Our proof uses a novel global argument, as opposed to the local-to-global arguments that are used to prove cosystolic expansion.

Summary

We haven't generated a summary for this paper yet.