CTEFM-VC: Zero-Shot Voice Conversion Based on Content-Aware Timbre Ensemble Modeling and Flow Matching (2411.02026v1)
Abstract: Zero-shot voice conversion (VC) aims to transform the timbre of a source speaker into any previously unseen target speaker, while preserving the original linguistic content. Despite notable progress, attaining a degree of speaker similarity and naturalness on par with ground truth recordings continues to pose great challenge. In this paper, we propose CTEFM-VC, a zero-shot VC framework that leverages Content-aware Timbre Ensemble modeling and Flow Matching. Specifically, CTEFM-VC disentangles utterances into linguistic content and timbre representations, subsequently utilizing a conditional flow matching model and a vocoder to reconstruct the mel-spectrogram and waveform. To enhance its timbre modeling capability and the naturalness of generated speech, we propose a context-aware timbre ensemble modeling approach that adaptively integrates diverse speaker verification embeddings and enables the joint utilization of linguistic and timbre features through a cross-attention module. Experiments show that our CTEFM-VC system surpasses state-of-the-art VC methods in both speaker similarity and naturalness by at least 18.5% and 7.0%.
- J. Yao, Q. Wang, P. Guo, Z. Ning, Y. Yang, Y. Pan, and L. Xie, “Musa: Multi-lingual speaker anonymization via serial disentanglement,” arXiv preprint arXiv:2407.11629, 2024.
- S. Chen, Y. Feng, L. He, T. He, W. He, Y. Hu, B. Lin, Y. Lin, P. Tan, C. Tian et al., “Takin: A cohort of superior quality zero-shot speech generation models,” arXiv preprint arXiv:2409.12139, 2024.
- Z. Tan, J. Wei, J. Xu, Y. He, and W. Lu, “Zero-shot voice conversion with adjusted speaker embeddings and simple acoustic features,” in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 5964–5968.
- X. Zhao, F. Liu, C. Song, Z. Wu, S. Kang, D. Tuo, and H. Meng, “Disentangling content and fine-grained prosody information via hybrid asr bottleneck features for voice conversion,” in ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022, pp. 7022–7026.
- S. Kovela, R. Valle, A. Dantrey, and B. Catanzaro, “Any-to-any voice conversion with f 0 and timbre disentanglement and novel timbre conditioning,” in ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023, pp. 1–5.
- A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang, Z. Zhang, Y. Wu et al., “Conformer: Convolution-augmented transformer for speech recognition,” arXiv preprint arXiv:2005.08100, 2020.
- Y. Yang, Y. Pan, J. Yin, J. Han, L. Ma, and H. Lu, “Hybridformer: Improving squeezeformer with hybrid attention and nsr mechanism,” in ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023, pp. 1–5.
- B. Desplanques, J. Thienpondt, and K. Demuynck, “Ecapa-tdnn: Emphasized channel attention, propagation and aggregation in tdnn based speaker verification,” arXiv preprint arXiv:2005.07143, 2020.
- H. Wang, S. Zheng, Y. Chen, L. Cheng, and Q. Chen, “Cam++: A fast and efficient network for speaker verification using context-aware masking,” arXiv preprint arXiv:2303.00332, 2023.
- Y. Pan, Y. Hu, Y. Yang, W. Fei, J. Yao, H. Lu, L. Ma, and J. Zhao, “Gemo-clap: Gender-attribute-enhanced contrastive language-audio pretraining for accurate speech emotion recognition,” in ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024, pp. 10 021–10 025.
- Y. Pan, Y. Yang, H. Lu, L. Ma, and J. Zhao, “Gmp-atl: Gender-augmented multi-scale pseudo-label enhanced adaptive transfer learning for speech emotion recognition via hubert,” arXiv preprint arXiv:2405.02151, 2024.
- S. Hussain, P. Neekhara, J. Huang, J. Li, and B. Ginsburg, “Ace-vc: Adaptive and controllable voice conversion using explicitly disentangled self-supervised speech representations,” in ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023, pp. 1–5.
- J. Li, Y. Guo, X. Chen, and K. Yu, “Sef-vc: Speaker embedding free zero-shot voice conversion with cross attention,” in ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024, pp. 12 296–12 300.
- W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdinov, and A. Mohamed, “Hubert: Self-supervised speech representation learning by masked prediction of hidden units,” IEEE/ACM transactions on audio, speech, and language processing, vol. 29, pp. 3451–3460, 2021.
- S. Chen, C. Wang, Z. Chen, Y. Wu, S. Liu, Z. Chen, J. Li, N. Kanda, T. Yoshioka, X. Xiao et al., “Wavlm: Large-scale self-supervised pre-training for full stack speech processing,” IEEE Journal of Selected Topics in Signal Processing, vol. 16, no. 6, pp. 1505–1518, 2022.
- T. Dang, D. Tran, P. Chin, and K. Koishida, “Training robust zero-shot voice conversion models with self-supervised features,” in ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022, pp. 6557–6561.
- J. Yao, Y. Yang, Y. Lei, Z. Ning, Y. Hu, Y. Pan, J. Yin, H. Zhou, H. Lu, and L. Xie, “Promptvc: Flexible stylistic voice conversion in latent space driven by natural language prompts,” in ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024, pp. 10 571–10 575.
- Y. Yang, Y. Pan, J. Yao, X. Zhang, J. Ye, H. Zhou, L. Xie, L. Ma, and J. Zhao, “Takin-vc: Zero-shot voice conversion via jointly hybrid content and memory-augmented context-aware timbre modeling,” arXiv preprint arXiv:2410.01350, 2024.
- Y. Chen, S. Zheng, H. Wang, L. Cheng, Q. Chen, and J. Qi, “An enhanced res2net with local and global feature fusion for speaker verification,” arXiv preprint arXiv:2305.12838, 2023.
- I. Yakovlev, R. Makarov, A. Balykin, P. Malov, A. Okhotnikov, and N. Torgashov, “Reshape dimensions network for speaker recognition,” arXiv preprint arXiv:2407.18223, 2024.
- X. Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, and J. Tang, “Gpt understands, too,” AI Open, 2023.
- Z. Wang, Y. Chen, L. Xie, Q. Tian, and Y. Wang, “Lm-vc: Zero-shot voice conversion via speech generation based on language models,” IEEE Signal Processing Letters, 2023.
- Z. Wang, Y. Chen, X. Wang, Z. Chen, L. Xie, Y. Wang, and Y. Wang, “Streamvoice: Streamable context-aware language modeling for real-time zero-shot voice conversion,” arXiv preprint arXiv:2401.11053, 2024.
- A. Défossez, J. Copet, G. Synnaeve, and Y. Adi, “High fidelity neural audio compression,” arXiv preprint arXiv:2210.13438, 2022.
- Y. Pan, L. Ma, and J. Zhao, “Promptcodec: High-fidelity neural speech codec using disentangled representation learning based adaptive feature-aware prompt encoders,” arXiv preprint arXiv:2404.02702, 2024.
- S.-g. Lee, W. Ping, B. Ginsburg, B. Catanzaro, and S. Yoon, “Bigvgan: A universal neural vocoder with large-scale training,” arXiv preprint arXiv:2206.04658, 2022.
- A. Tong, N. Malkin, G. Huguet, Y. Zhang, J. Rector-Brooks, K. Fatras, G. Wolf, and Y. Bengio, “Conditional flow matching: Simulation-free dynamic optimal transport,” arXiv preprint arXiv:2302.00482, vol. 2, no. 3, 2023.
- H. Zen, V. Dang, R. Clark, Y. Zhang, R. J. Weiss, Y. Jia, Z. Chen, and Y. Wu, “Libritts: A corpus derived from librispeech for text-to-speech,” arXiv preprint arXiv:1904.02882, 2019.
- J. Yamagishi, C. Veaux, K. MacDonald et al., “Cstr vctk corpus: English multi-speaker corpus for cstr voice cloning toolkit (version 0.92),” University of Edinburgh. The Centre for Speech Technology Research (CSTR), pp. 271–350, 2019.
- K. Zhou, B. Sisman, R. Liu, and H. Li, “Emotional voice conversion: Theory, databases and esd,” Speech Communication, vol. 137, pp. 1–18, 2022.
- V. Popov, I. Vovk, V. Gogoryan, T. Sadekova, M. Kudinov, and J. Wei, “Diffusion-based voice conversion with fast maximum likelihood sampling scheme,” arXiv preprint arXiv:2109.13821, 2021.
- K. Shen, Z. Ju, X. Tan, Y. Liu, Y. Leng, L. He, T. Qin, S. Zhao, and J. Bian, “Naturalspeech 2: Latent diffusion models are natural and zero-shot speech and singing synthesizers,” arXiv preprint arXiv:2304.09116, 2023.
- C. Wang, S. Chen, Y. Wu, Z. Zhang, L. Zhou, S. Liu, Z. Chen, Y. Liu, H. Wang, J. Li et al., “Neural codec language models are zero-shot text to speech synthesizers,” arXiv preprint arXiv:2301.02111, 2023.