2000 character limit reached
The thermal bootstrap for the critical O(N) model (2411.00978v3)
Published 1 Nov 2024 in hep-th
Abstract: We propose a numerical method to estimate one-point functions and the free-energy density of conformal field theories at finite temperature by solving the Kubo-Martin-Schwinger condition for the two-point functions of identical scalars. We apply the method for the critical O(N) model for N = 1,2,3 in 3 $\leq$ d $\leq$ 4. We find agreement with known results from Monte Carlo simulations and previous results for the 3d Ising model, and we provide new predictions for N = 2,3.
- S. Sachdev, Quantum Phase Transitions (Cambridge University Press, 2011).
- M. Vojta, Rept. Prog. Phys. 66, 2069 (2003).
- E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998), arXiv:hep-th/9803131 .
- D. Simmons-Duffin, in Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (2017) pp. 1–74, arXiv:1602.07982 [hep-th] .
- S. Rychkov and N. Su, (2023), arXiv:2311.15844 [hep-th] .
- S. El-Showk and K. Papadodimas, JHEP 10, 106 (2012), arXiv:1101.4163 [hep-th] .
- The OPE holds operatorially, though its radius of convergence is finite (and equal to β𝛽\betaitalic_β) at finite temperature.
- R. Kubo, J. Phys. Soc. Jap. 12, 570 (1957).
- P. C. Martin and J. S. Schwinger, Phys. Rev. 115, 1342 (1959).
- The KMS fixed point is achieved when the two operators are placed at an imaginary time separation of τ=β/2𝜏𝛽2\tau=\beta/2italic_τ = italic_β / 2.
- See Supplemental Material.
- V. L. Berezinsky, Sov. Phys. JETP 32, 493 (1971).
- J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).
- O. A. McBryan and T. Spencer, Commun. Math. Phys. 53, 299 (1977).
- M. Krech and D. P. Landau, Phys. Rev. E 53, 4414 (1996).
- M. Krech, Phys. Rev. E 56, 1642 (1997).
- Thermal OPE coefficients from Monte Carlo simulations require combining simulation results with the inversion formula, as done for the 3d3𝑑3d3 italic_d Ising model in Iliesiu et al. (2019).
- We exclude the case in which there are more operators of dimension Δ=dΔ𝑑\Delta=droman_Δ = italic_d. This is the case for the O(N)O𝑁\mathrm{O}(N)roman_O ( italic_N ) model that we are studying in this letter.
- We use conformal dimensions up to order O(ε3)𝑂superscript𝜀3O(\varepsilon^{3})italic_O ( italic_ε start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) and the CFT data needed to convert the stress-energy tensor coefficient to free energy up to order O(ε5)𝑂superscript𝜀5O(\varepsilon^{5})italic_O ( italic_ε start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT ).
- J. Henriksson, Phys. Rept. 1002, 1 (2023), arXiv:2201.09520 [hep-th] .
- M. Reehorst, JHEP 09, 177 (2022), arXiv:2111.12093 [hep-th] .
- I. Affleck, Acta Phys. Polon. B 26, 1869 (1995), arXiv:cond-mat/9512099 .
- S. Sachdev, J. Stat. Mech. 1011, P11022 (2010), arXiv:1010.0682 [cond-mat.str-el] .
- S. Sachdev (2024) arXiv:2407.15919 [cond-mat.str-el] .
- J. M. Maldacena, Phys. Rev. Lett. 80, 4859 (1998), arXiv:hep-th/9803002 .
- A. C. Petkou and A. Stergiou, Phys. Rev. Lett. 121, 071602 (2018), arXiv:1806.02340 [hep-th] .
- A. C. Petkou, Phys. Lett. B 820, 136467 (2021), arXiv:2105.03530 [hep-th] .
- J. R. David and S. Kumar, JHEP 10, 143 (2023), arXiv:2307.14847 [hep-th] .
- J. R. David and S. Kumar, (2024), arXiv:2406.14490 [hep-th] .
- K. B. Alkalaev and S. Mandrygin, (2024), arXiv:2407.01741 [hep-th] .
- H. Helton, MSc Thesis, Princeton University .
- F. Gliozzi, Phys. Rev. Lett. 111, 161602 (2013), arXiv:1307.3111 [hep-th] .
- F. Gliozzi and A. Rago, JHEP 10, 042 (2014), arXiv:1403.6003 [hep-th] .
- F. Gliozzi, JHEP 10, 037 (2016), arXiv:1605.04175 [hep-th] .
- N. Su, (2022), arXiv:2202.07607 [hep-th] .
- W. Li, JHEP 07, 047 (2024), arXiv:2312.07866 [hep-th] .