Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamical simulations of many-body quantum chaos on a quantum computer (2411.00765v1)

Published 1 Nov 2024 in quant-ph and cond-mat.stat-mech

Abstract: Quantum circuits with local unitaries have emerged as a rich playground for the exploration of many-body quantum dynamics of discrete-time systems. While the intrinsic locality makes them particularly suited to run on current quantum processors, the task of verification at non-trivial scales is complicated for non-integrable systems. Here, we study a special class of maximally chaotic circuits known as dual unitary circuits -- exhibiting unitarity in both space and time -- that are known to have exact analytical solutions for certain correlation functions. With advances in noise learning and the implementation of novel error mitigation methods, we show that a superconducting quantum processor with 91 qubits is able to accurately simulate these correlators. We then probe dynamics beyond exact verification, by perturbing the circuits away from the dual unitary point, and compare our results to classical approximations with tensor networks. These results cement error-mitigated digital quantum simulation on pre-fault-tolerant quantum processors as a trustworthy platform for the exploration and discovery of novel emergent quantum many-body phases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (70)
  1. Alexander Miessen, Pauline J Ollitrault, Francesco Tacchino,  and Ivano Tavernelli, “Quantum algorithms for quantum dynamics,” Nature Computational Science 3, 25–37 (2023).
  2. Matthew PA Fisher, Vedika Khemani, Adam Nahum,  and Sagar Vijay, “Random quantum circuits,” Annual Review of Condensed Matter Physics 14, 335–379 (2023).
  3. Dominik Hangleiter and Jens Eisert, “Computational advantage of quantum random sampling,” Reviews of Modern Physics 95, 035001 (2023).
  4. Yaodong Li, Xiao Chen,  and Matthew P. A. Fisher, “Quantum zeno effect and the many-body entanglement transition,” Phys. Rev. B 98, 205136 (2018).
  5. Brian Skinner, Jonathan Ruhman,  and Adam Nahum, “Measurement-induced phase transitions in the dynamics of entanglement,” Phys. Rev. X 9, 031009 (2019).
  6. Xiao Mi, Matteo Ippoliti, Chris Quintana, Ami Greene, Zijun Chen, Jonathan Gross, Frank Arute, Kunal Arya, Juan Atalaya, Ryan Babbush, et al., “Time-crystalline eigenstate order on a quantum processor,” Nature 601, 531–536 (2022).
  7. Christoph Sünderhauf, David Pérez-García, David A. Huse, Norbert Schuch,  and J. Ignacio Cirac, “Localization with random time-periodic quantum circuits,” Phys. Rev. B 98, 134204 (2018).
  8. S. J. Garratt and J. T. Chalker, “Many-body delocalization as symmetry breaking,” Phys. Rev. Lett. 127, 026802 (2021).
  9. Alan Morningstar, Luis Colmenarez, Vedika Khemani, David J. Luitz,  and David A. Huse, “Avalanches and many-body resonances in many-body localized systems,” Phys. Rev. B 105, 174205 (2022).
  10. Matthieu Vanicat, Lenart Zadnik,  and Tomaž Prosen, “Integrable trotterization: Local conservation laws and boundary driving,” Phys. Rev. Lett. 121, 030606 (2018).
  11. Amos Chan, Andrea De Luca,  and J. T. Chalker, “Solution of a minimal model for many-body quantum chaos,” Phys. Rev. X 8, 041019 (2018).
  12. Bruno Bertini, Pavel Kos,  and Tomaž Prosen, “Exact correlation functions for dual-unitary lattice models in 1+1111+11 + 1 dimensions,” Phys. Rev. Lett. 123, 210601 (2019a).
  13. Lorenzo Piroli, Bruno Bertini, J. Ignacio Cirac,  and Tomaž Prosen, “Exact dynamics in dual-unitary quantum circuits,” Phys. Rev. B 101, 094304 (2020).
  14. Bruno Bertini, Pavel Kos,  and Tomaž Prosen, “Operator entanglement in local quantum circuits i: Chaotic dual-unitary circuits,” SciPost Physics 8, 067 (2020).
  15. Matteo Ippoliti and Vedika Khemani, “Postselection-free entanglement dynamics via spacetime duality,” Phys. Rev. Lett. 126, 060501 (2021).
  16. Ryotaro Suzuki, Kosuke Mitarai,  and Keisuke Fujii, “Computational power of one-and two-dimensional dual-unitary quantum circuits,” Quantum 6, 631 (2022).
  17. Pieter W. Claeys and Austen Lamacraft, “Maximum velocity quantum circuits,” Phys. Rev. Res. 2, 033032 (2020).
  18. Bruno Bertini and Lorenzo Piroli, “Scrambling in random unitary circuits: Exact results,” Phys. Rev. B 102, 064305 (2020).
  19. Eli Chertkov, Justin Bohnet, David Francois, John Gaebler, Dan Gresh, Aaron Hankin, Kenny Lee, David Hayes, Brian Neyenhuis, Russell Stutz, et al., “Holographic dynamics simulations with a trapped-ion quantum computer,” Nature Physics 18, 1074–1079 (2022).
  20. Bruno Bertini, Pavel Kos,  and Tomaž Prosen, “Exact spectral form factor in a minimal model of many-body quantum chaos,” Phys. Rev. Lett. 121, 264101 (2018).
  21. Bruno Bertini, Pavel Kos,  and Tomaž Prosen, “Random matrix spectral form factor of dual-unitary quantum circuits,” Commun. Math. Phys. 387, 597–620 (2021).
  22. Bruno Bertini, Pavel Kos,  and Tomaž Prosen, “Entanglement spreading in a minimal model of maximal many-body quantum chaos,” Phys. Rev. X 9, 021033 (2019b).
  23. Tianci Zhou and Aram W. Harrow, “Maximal entanglement velocity implies dual unitarity,” Phys. Rev. B 106, L201104 (2022).
  24. Xiao Mi, Pedram Roushan, Chris Quintana, Salvatore Mandra, Jeffrey Marshall, Charles Neill, Frank Arute, Kunal Arya, Juan Atalaya, Ryan Babbush, et al., “Information scrambling in quantum circuits,” Science 374, 1479–1483 (2021).
  25. Nathan Keenan, Niall F Robertson, Tara Murphy, Sergiy Zhuk,  and John Goold, “Evidence of kardar-parisi-zhang scaling on a digital quantum simulator,” npj Quantum Inf. 9, 72 (2023).
  26. Youngseok Kim, Andrew Eddins, Sajant Anand, Ken Xuan Wei, Ewout Van Den Berg, Sami Rosenblatt, Hasan Nayfeh, Yantao Wu, Michael Zaletel, Kristan Temme, et al., “Evidence for the utility of quantum computing before fault tolerance,” Nature 618, 500–505 (2023).
  27. Javier Robledo-Moreno, Mario Motta, Holger Haas, Ali Javadi-Abhari, Petar Jurcevic, William Kirby, Simon Martiel, Kunal Sharma, Sandeep Sharma, Tomonori Shirakawa, Iskandar Sitdikov, Rong-Yang Sun, Kevin J. Sung, Maika Takita, Minh C. Tran, Seiji Yunoki,  and Antonio Mezzacapo, “Chemistry beyond exact solutions on a quantum-centric supercomputer,” arXiv preprint arxiv:2405.05068  (2024).
  28. Kazuya Shinjo, Kazuhiro Seki, Tomonori Shirakawa, Rong-Yang Sun,  and Seiji Yunoki, “Unveiling clean two-dimensional discrete time quasicrystals on a digital quantum computer,” arXiv preprint arXiv:2403.16718  (2024).
  29. Roland C. Farrell, Marc Illa, Anthony N. Ciavarella,  and Martin J. Savage, “Quantum simulations of hadron dynamics in the schwinger model using 112 qubits,” Phys. Rev. D 109, 114510 (2024).
  30. Oles Shtanko, Derek S Wang, Haimeng Zhang, Nikhil Harle, Alireza Seif, Ramis Movassagh,  and Zlatko Minev, “Uncovering local integrability in quantum many-body dynamics,” arXiv preprint arXiv:2307.07552  (2023).
  31. Kristan Temme, Sergey Bravyi,  and Jay M. Gambetta, “Error mitigation for short-depth quantum circuits,” Phys. Rev. Lett. 119, 180509 (2017).
  32. Ying Li and Simon C. Benjamin, “Efficient variational quantum simulator incorporating active error minimization,” Phys. Rev. X 7, 021050 (2017).
  33. Abhinav Kandala, Kristan Temme, Antonio D. Córcoles, Antonio Mezzacapo, Jerry M. Chow,  and Jay M. Gambetta, “Error mitigation extends the computational reach of a noisy quantum processor,” Nature 567, 491–495 (2019).
  34. Ewout Van Den Berg, Zlatko K Minev, Abhinav Kandala,  and Kristan Temme, “Probabilistic error cancellation with sparse pauli–lindblad models on noisy quantum processors,” Nature Physics 19, 1116–1121 (2023).
  35. LCG Govia, S Majumder, SV Barron, B Mitchell, A Seif, Y Kim, CJ Wood, EJ Pritchett, ST Merkel,  and DC McKay, “Bounding the systematic error in quantum error mitigation due to model violation,” arXiv preprint arXiv:2408.10985  (2024).
  36. Sergei Filippov, Matea Leahy, Matteo AC Rossi,  and Guillermo García-Pérez, “Scalable tensor-network error mitigation for near-term quantum computing,” arXiv preprint arXiv:2307.11740  (2023).
  37. Sergey N. Filippov, Sabrina Maniscalco,  and Guillermo García-Pérez, “Scalability of quantum error mitigation techniques: from utility to advantage,” arXiv preprint arXiv:2403.13542  (2024).
  38. M Akila, D Waltner, B Gutkin,  and T Guhr, “Particle-time duality in the kicked ising spin chain,” Journal of Physics A: Mathematical and Theoretical 49, 375101 (2016).
  39. Charles H. Bennett, Gilles Brassard, Sandu Popescu, Benjamin Schumacher, John A. Smolin,  and William K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996).
  40. Emanuel Knill, “Fault-tolerant postselected quantum computation: Threshold analysis,” arXiv preprint quant-ph/0404104  (2004).
  41. Joel J Wallman and Joseph Emerson, “Noise tailoring for scalable quantum computation via randomized compiling,” Phys. Rev. A 94, 052325 (2016).
  42. Akel Hashim, Ravi K. Naik, Alexis Morvan, Jean-Loup Ville, Bradley Mitchell, John Mark Kreikebaum, Marc Davis, Ethan Smith, Costin Iancu, Kevin P. O’Brien, Ian Hincks, Joel J. Wallman, Joseph Emerson,  and Irfan Siddiqi, “Randomized compiling for scalable quantum computing on a noisy superconducting quantum processor,” Phys. Rev. X 11, 041039 (2021).
  43. Senrui Chen, Yunchao Liu, Matthew Otten, Alireza Seif, Bill Fefferman,  and Liang Jiang, “The learnability of pauli noise,” Nature Communications 14, 52 (2023).
  44. Senrui Chen, Zhihan Zhang, Liang Jiang,  and Steven T. Flammia, “Efficient self-consistent learning of gate set pauli noise,” arXiv preprint arXiv:2410.03906  (2024).
  45. Youngseok Kim, Luke CG Govia, Andrew Dane, Ewout van den Berg, David M Zajac, Bradley Mitchell, Yinyu Liu, Karthik Balakrishnan, George Keefe, Adam Stabile, et al., “Error mitigation with stabilized noise in superconducting quantum processors,” arXiv preprint arXiv:2407.02467  (2024).
  46. Marko Ljubotina, Lenart Zadnik,  and Tomaž Prosen, “Ballistic spin transport in a periodically driven integrable quantum system,” Phys. Rev. Lett. 122, 150605 (2019).
  47. David M. Long, Philip J. D. Crowley, Vedika Khemani,  and Anushya Chandran, “Phenomenology of the prethermal many-body localized regime,” Phys. Rev. Lett. 131, 106301 (2023).
  48. Andrew Eddins, Minh C Tran,  and Patrick Rall, “Lightcone shading for classically accelerated quantum error mitigation,” arXiv preprint arXiv:2409.04401  (2024).
  49. Niall F. Robertson, Bibek Pokharel, Bryce Fuller, Eric Switzer, Oles Shtanko, Mirko Amico, Adam Byrne, Andrea D’Urbano, Salome Hayes-Shuptar, Albert Akhriev, Nathan Keenan, Sergey Bravyi,  and Sergiy Zhuk, “Tensor network enhanced dynamic multiproduct formulas,”  (2024), arXiv:2407.17405 [quant-ph] .
  50. J Stehlik, DM Zajac, DL Underwood, T Phung, J Blair, S Carnevale, D Klaus, GA Keefe, A Carniol, Muir Kumph, et al., “Tunable coupling architecture for fixed-frequency transmon superconducting qubits,” Phys. Rev. Lett. 127, 080505 (2021).
  51. Andrew Wack, Hanhee Paik, Ali Javadi-Abhari, Petar Jurcevic, Ismael Faro, Jay M Gambetta,  and Blake R Johnson, “Scale, quality, and speed: three key attributes to measure the performance of near-term quantum computers,” arXiv preprint arXiv:2110.14108  (2021).
  52. Abhi D Rajagopala, Akel Hashim, Neelay Fruitwala, Gang Huang, Yilun Xu, Jordan Hines, Irfan Siddiqi, Katherine Klymko,  and Kasra Nowrouzi, “Hardware-assisted parameterized circuit execution,” arXiv preprint arXiv:2409.03725  (2024).
  53. Ewout Van Den Berg, Zlatko K Minev,  and Kristan Temme, “Model-free readout-error mitigation for quantum expectation values,” Phys. Rev. A 105, 032620 (2022).
  54. Kento Tsubouchi, Takahiro Sagawa,  and Nobuyuki Yoshioka, “Universal cost bound of quantum error mitigation based on quantum estimation theory,” Phys. Rev. Lett. 131, 210601 (2023).
  55. Sarah Sheldon, Easwar Magesan, Jerry M Chow,  and Jay M Gambetta, “Procedure for systematically tuning up cross-talk in the cross-resonance gate,” Phys. Rev. A 93, 060302 (2016).
  56. David C McKay, Christopher J Wood, Sarah Sheldon, Jerry M Chow,  and Jay M Gambetta, “Efficient z gates for quantum computing,” Phys. Rev. A 96, 022330 (2017).
  57. Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J. Wood, Jake Lishman, Julien Gacon, Simon Martiel, Paul D. Nation, Lev S. Bishop, Andrew W. Cross, Blake R. Johnson,  and Jay M. Gambetta, “Quantum computing with Qiskit,” arXiv preprint arXiv:2405.08810  (2024).
  58. Filip B Maciejewski, Zoltán Zimborás,  and Michał Oszmaniec, “Mitigation of readout noise in near-term quantum devices by classical post-processing based on detector tomography,” Quantum 4, 257 (2020).
  59. Michael R Geller, “Rigorous measurement error correction,” Quantum Science and Technology 5, 03LT01 (2020).
  60. Alexander Erhard, Joel J Wallman, Lukas Postler, Michael Meth, Roman Stricker, Esteban A Martinez, Philipp Schindler, Thomas Monz, Joseph Emerson,  and Rainer Blatt, “Characterizing large-scale quantum computers via cycle benchmarking,” Nature communications 10, 5347 (2019).
  61. Ulrich Schollwöck, “The density-matrix renormalization group in the age of matrix product states,” Annals of Physics 326, 96–192 (2011), january 2011 Special Issue.
  62. C. Hubig, I. P. McCulloch,  and U. Schollwöck, “Generic construction of efficient matrix product operators,” Phys. Rev. B 95, 035129 (2017).
  63. Simone Montangero, Introduction to Tensor Network Methods (Springer Cham, 2018).
  64. Christopher J. Wood, Jacob D. Biamonte,  and David G. Cory, “Tensor networks and graphical calculus for open quantum systems,” Quant. Inf. Comput. 15, 0759–0811 (2015).
  65. Ian P McCulloch, “From density-matrix renormalization group to matrix product states,” J. Stat. Mech. , P10014 (2007).
  66. Guillermo García-Pérez, Matteo AC Rossi, Boris Sokolov, Francesco Tacchino, Panagiotis Kl Barkoutsos, Guglielmo Mazzola, Ivano Tavernelli,  and Sabrina Maniscalco, “Learning to measure: Adaptive informationally complete generalized measurements for quantum algorithms,” PRX Quantum 2, 040342 (2021).
  67. Adam Glos, Anton Nykänen, Elsi-Mari Borrelli, Sabrina Maniscalco, Matteo AC Rossi, Zoltán Zimborás,  and Guillermo García-Pérez, “Adaptive povm implementations and measurement error mitigation strategies for near-term quantum devices,” arXiv preprint arXiv:2208.07817  (2022).
  68. Tomislav Begušić, Johnnie Gray,  and Garnet Kin-Lic Chan, “Fast and converged classical simulations of evidence for the utility of quantum computing before fault tolerance,” Science Advances 10 (2024).
  69. Johnnie Gray, “quimb: a python library for quantum information and many-body calculations,” Journal of Open Source Software 3, 819 (2018).
  70. Matthew Fishman, Steven R. White,  and E. Miles Stoudenmire, “The ITensor Software Library for Tensor Network Calculations,” SciPost Phys. Codebases , 4 (2022).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com