Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp Bounds on the Variance of General Regression Adjustment in Randomized Experiments (2411.00191v1)

Published 31 Oct 2024 in stat.ME, math.ST, and stat.TH

Abstract: Building on statistical foundations laid by Neyman [1923] a century ago, a growing literature focuses on problems of causal inference that arise in the context of randomized experiments where the target of inference is the average treatment effect in a finite population and random assignment determines which subjects are allocated to one of the experimental conditions. In this framework, variances of average treatment effect estimators remain unidentified because they depend on the covariance between treated and untreated potential outcomes, which are never jointly observed. Aronow et al. [2014] provide an estimator for the variance of the difference-in-means estimator that is asymptotically sharp. In practice, researchers often use some form of covariate adjustment, such as linear regression when estimating the average treatment effect. Here we extend the Aronow et al. [2014] result, providing asymptotically sharp variance bounds for general regression adjustment. We apply these results to linear regression adjustment and show benefits both in a simulation as well as an empirical application.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com