Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tensegrity Robot Proprioceptive State Estimation with Geometric Constraints (2410.24226v2)

Published 31 Oct 2024 in cs.RO

Abstract: Tensegrity robots, characterized by a synergistic assembly of rigid rods and elastic cables, form robust structures that are resistant to impacts. However, this design introduces complexities in kinematics and dynamics, complicating control and state estimation. This work presents a novel proprioceptive state estimator for tensegrity robots. The estimator initially uses the geometric constraints of 3-bar prism tensegrity structures, combined with IMU and motor encoder measurements, to reconstruct the robot's shape and orientation. It then employs a contact-aided invariant extended Kalman filter with forward kinematics to estimate the global position and orientation of the tensegrity robot. The state estimator's accuracy is assessed against ground truth data in both simulated environments and real-world tensegrity robot applications. It achieves an average drift percentage of 4.2%, comparable to the state estimation performance of traditional rigid robots. This state estimator advances the state of the art in tensegrity robot state estimation and has the potential to run in real-time using onboard sensors, paving the way for full autonomy of tensegrity robots in unstructured environments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. D. S. Shah, J. W. Booth, R. L. Baines, K. Wang, M. Vespignani, K. Bekris, and R. Kramer-Bottiglio, “Tensegrity robotics,” Soft robotics, vol. 9, no. 4, pp. 639–656, 2022.
  2. A. P. Sabelhaus, J. Bruce, K. Caluwaerts, Y. Chen, D. Lu, Y. Liu, A. K. Agogino, V. SunSpiral, and A. M. Agogino, “Hardware design and testing of superball, a modular tensegrity robot,” in World Conference on Structural Control and Monitoring (WCSCM), no. ARC-E-DAA-TN15339, 2014.
  3. A. P. Sabelhaus, J. Bruce, K. Caluwaerts, P. Manovi, R. F. Firoozi, S. Dobi, A. M. Agogino, and V. SunSpiral, “System design and locomotion of superball, an untethered tensegrity robot,” in Proc. IEEE Int. Conf. Robot. and Automation.   IEEE, 2015, pp. 2867–2873.
  4. M. Vespignani, J. M. Friesen, V. SunSpiral, and J. Bruce, “Design of superball v2, a compliant tensegrity robot for absorbing large impacts,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst.   IEEE, 2018, pp. 2865–2871.
  5. J. Mi, W. Tong, Y. Ma, and X. Huang, “Design of a variable stiffness quasi-direct drive cable-actuated tensegrity robot,” arXiv preprint arXiv:2409.05751, 2024.
  6. C. Paul, F. J. Valero-Cuevas, and H. Lipson, “Design and control of tensegrity robots for locomotion,” IEEE Trans. Robot., vol. 22, no. 5, pp. 944–957, 2006.
  7. K. Kim, A. K. Agogino, D. Moon, L. Taneja, A. Toghyan, B. Dehghani, V. SunSpiral, and A. M. Agogino, “Rapid prototyping design and control of tensegrity soft robot for locomotion,” in IEEE international conference on robotics and biomimetics.   IEEE, 2014, pp. 7–14.
  8. K. Kim, A. K. Agogino, A. Toghyan, D. Moon, L. Taneja, and A. M. Agogino, “Robust learning of tensegrity robot control for locomotion through form-finding,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst.   IEEE, 2015, pp. 5824–5831.
  9. C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel, and J. D. Tardós, “ORB-SLAM3: An accurate open-source library for visual, visual–inertial, and multimap slam,” IEEE Trans. Robot., vol. 37, no. 6, pp. 1874–1890, 2021.
  10. T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “LIO-SAM: Tightly-coupled lidar inertial odometry via smoothing and mapping,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst.   IEEE, 2020, pp. 5135–5142.
  11. D. Li, X. Shi, Q. Long, S. Liu, W. Yang, F. Wang, Q. Wei, and F. Qiao, “DXSLAM: A robust and efficient visual slam system with deep features,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst.   IEEE, 2020, pp. 4958–4965.
  12. T.-Y. Lin, T. Li, W. Tong, and M. Ghaffari, “Proprioceptive invariant robot state estimation,” arXiv preprint arXiv:2311.04320, 2023.
  13. X. Xu, T. Zhang, S. Wang, X. Li, Y. Chen, Y. Li, B. Raj, M. Johnson-Roberson, and X. Huang, “Customizable perturbation synthesis for robust slam benchmarking,” arXiv preprint arXiv:2402.08125, 2024.
  14. L.-H. Chen, K. Kim, E. Tang, K. Li, R. House, E. L. Zhu, K. Fountain, A. M. Agogino, A. Agogino, V. Sunspiral et al., “Soft spherical tensegrity robot design using rod-centered actuation and control,” Journal of Mechanisms and Robotics, vol. 9, no. 2, p. 025001, 2017.
  15. S. Hirai, Y. Koizumi, M. Shibata, M. Wang, and L. Bin, “Active shaping of a tensegrity robot via pre-pressure,” in IEEE/ASME International Conference on Advanced Intelligent Mechatronics.   IEEE, 2013, pp. 19–25.
  16. J. Rieffel and J.-B. Mouret, “Adaptive and resilient soft tensegrity robots,” Soft robotics, vol. 5, no. 3, pp. 318–329, 2018.
  17. S. Lu, W. R. Johnson III, K. Wang, X. Huang, J. Booth, R. Kramer-Bottiglio, and K. Bekris, “6n-dof pose tracking for tensegrity robots,” in The International Symposium of Robotics Research.   Springer, 2022, pp. 136–152.
  18. W. R. Johnson, A. Agrawala, X. Huang, J. Booth, and R. Kramer-Bottiglio, “Sensor tendons for soft robot shape estimation,” in 2022 IEEE Sensors.   IEEE, 2022, pp. 1–4.
  19. W.-Y. Li, A. Takata, H. Nabae, G. Endo, and K. Suzumori, “Shape recognition of a tensegrity with soft sensor threads and artificial muscles using a recurrent neural network,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 6228–6234, 2021.
  20. T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular visual-inertial state estimator,” IEEE Trans. Robot., vol. 34, no. 4, pp. 1004–1020, 2018.
  21. M. Camurri, M. Ramezani, S. Nobili, and M. Fallon, “Pronto: A multi-sensor state estimator for legged robots in real-world scenarios,” Frontiers in Robotics and AI, vol. 7, p. 68, 2020.
  22. M. Li and A. I. Mourikis, “High-precision, consistent ekf-based visual-inertial odometry,” Int. J. Robot. Res., vol. 32, no. 6, pp. 690–711, 2013.
  23. M. Bloesch, M. Hutter, M. A. Hoepflinger, S. Leutenegger, C. Gehring, C. D. Remy, and R. Siegwart, “State estimation for legged robots: Consistent fusion of leg kinematics and imu,” 2013.
  24. R. Hartley, M. Ghaffari, R. M. Eustice, and J. W. Grizzle, “Contact-aided invariant extended kalman filtering for robot state estimation,” Int. J. Robot. Res., vol. 39, no. 4, pp. 402–430, 2020.
  25. X. Yu, S. Teng, T. Chakhachiro, W. Tong, T. Li, T.-Y. Lin, S. Koehler, M. Ahumada, J. M. Walls, and M. Ghaffari, “Fully proprioceptive slip-velocity-aware state estimation for mobile robots via invariant Kalman filtering and disturbance observer,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots and Syst.   IEEE, 2023, pp. 8096–8103.
  26. L. Xiong, X. Xia, Y. Lu, W. Liu, L. Gao, S. Song, Y. Han, and Z. Yu, “IMU-based automated vehicle slip angle and attitude estimation aided by vehicle dynamics,” Sensors, vol. 19, no. 8, p. 1930, 2019.
  27. B. R. Tietz, R. W. Carnahan, R. J. Bachmann, R. D. Quinn, and V. SunSpiral, “Tetraspine: Robust terrain handling on a tensegrity robot using central pattern generators,” in IEEE/ASME International Conference on Advanced Intelligent Mechatronics.   IEEE, 2013, pp. 261–267.
  28. X. Huang, W. R. Johnson, J. Booth, and R. Kramer-Bottiglio, “Live demonstration: Tensegrity state estimation,” in IEEE Sensors.   IEEE, 2022, pp. 1–1.
  29. J. W. Booth, O. Cyr-Choiniere, J. C. Case, D. Shah, M. C. Yuen, and R. Kramer-Bottiglio, “Surface actuation and sensing of a tensegrity structure using robotic skins,” Soft Robotics, vol. 8, no. 5, pp. 531–541, 2021.
  30. A. Moldagalieva, D. Fadeyev, A. Kuzdeuov, V. Khan, B. Alimzhanov, and H. A. Varol, “Computer vision-based pose estimation of tensegrity robots using fiducial markers,” in IEEE/SICE International Symposium on System Integration (SII).   IEEE, 2019, pp. 478–483.
  31. K. Caluwaerts, J. Bruce, J. M. Friesen, and V. SunSpiral, “State estimation for tensegrity robots,” in Proc. IEEE Int. Conf. Robot. and Automation.   IEEE, 2016, pp. 1860–1865.
  32. A. Barrau and S. Bonnabel, “An EKF-SLAM algorithm with consistency properties,” arXiv preprint arXiv:1510.06263, 2015.
  33. A. Barrau, “Non-linear state error based extended kalman filters with applications to navigation,” Ph.D. dissertation, Mines Paristech, 2015.
  34. Y. Luo, M. Wang, and C. Guo, “The geometry and kinematics of the matrix lie group s⁢e⁢_⁢k⁢(3)𝑠𝑒_𝑘3se\_k(3)italic_s italic_e _ italic_k ( 3 ),” arXiv preprint arXiv:2012.00950, 2020.
  35. M. Grupp, “evo: Python package for the evaluation of odometry and slam.” https://github.com/MichaelGrupp/evo, 2017.
  36. S. Yang, Z. Zhang, Z. Fu, and Z. Manchester, “Cerberus: Low-drift visual-inertial-leg odometry for agile locomotion,” in Proc. IEEE Int. Conf. Robot. and Automation.   IEEE, 2023, pp. 4193–4199.

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com