Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coherence-free Entrywise Estimation of Eigenvectors in Low-rank Signal-plus-noise Matrix Models (2410.24195v1)

Published 31 Oct 2024 in math.ST and stat.TH

Abstract: Spectral methods are widely used to estimate eigenvectors of a low-rank signal matrix subject to noise. These methods use the leading eigenspace of an observed matrix to estimate this low-rank signal. Typically, the entrywise estimation error of these methods depends on the coherence of the low-rank signal matrix with respect to the standard basis. In this work, we present a novel method for eigenvector estimation that avoids this dependence on coherence. Assuming a rank-one signal matrix, under mild technical conditions, the entrywise estimation error of our method provably has no dependence on the coherence under Gaussian noise (i.e., in the spiked Wigner model), and achieves the optimal estimation rate up to logarithmic factors. Simulations demonstrate that our method performs well under non-Gaussian noise and that an extension of our method to the case of a rank-$r$ signal matrix has little to no dependence on the coherence. In addition, we derive new metric entropy bounds for rank-$r$ singular subspaces under $\ell_{2,\infty}$ distance, which may be of independent interest. We use these new bounds to improve the best known lower bound for rank-$r$ eigenspace estimation under $\ell_{2,\infty}$ distance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. E. Abbe. Community detection and stochastic block models: Recent developments. Journal of Machine Learning Research, 18(177):1–86, 2018.
  2. Entrywise eigenvector analysis of random matrices with low expected rank. Annals of Statistics, 48(3):1452, 2020.
  3. J. Agterberg and J. Sulam. Entrywise recovery guarantees for sparse PCA via sparsistent algorithms. In International Conference on Artificial Intelligence and Statistics, pages 6591–6629. PMLR, 2022.
  4. J. Agterberg and A. Zhang. Estimating higher-order mixed memberships via the ℓ2,∞subscriptℓ2\ell_{2,\infty}roman_ℓ start_POSTSUBSCRIPT 2 , ∞ end_POSTSUBSCRIPT tensor perturbation bound. arXiv preprint arXiv:2212.08642, 2022.
  5. Entrywise estimation of singular vectors of low-rank matrices with heteroskedasticity and dependence. IEEE Transactions on Information Theory, 68(7):4618–4650, 2022.
  6. Fundamental limits of detection in the spiked Wigner model. Annals of Statistics, 48(2):863 – 885, 2020.
  7. Matrix completion methods for causal panel data models. Journal of the American Statistical Association, 116(536):1716–1730, 2021.
  8. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. The Annals of Probability, 33(5):1643 – 1697, 2005.
  9. Information-theoretic bounds and phase transitions in clustering, sparse PCA, and submatrix localization. IEEE Transactions on Information Theory, 64(7):4872–4894, 2018.
  10. Singular vector and singular subspace distribution for the matrix denoising model. Annals of Statistics, 49(1):370 – 392, 2021.
  11. Statistical inference for principal components of spiked covariance matrices. Annals of Statistics, 50(2):1144 – 1169, 2022.
  12. F. Benaych-Georges and R. R. Nadakuditi. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Advances in Mathematics, 227(1):494–521, 2011. ISSN 0001-8708.
  13. A Grassmann manifold handbook: Basic geometry and computational aspects. Advances in Computational Mathematics, 50(1):1–51, 2024.
  14. A. Bhardwaj and V. Vu. Matrix perturbation: Davis-Kahan in the infinity norm. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 880–934. SIAM, 2024.
  15. R. Bhatia. Matrix Analysis, volume 169 of Graduate Texts in Mathematics. Springer Science & Business Media, 2013.
  16. N. Boumal. An Introduction to Optimization on Smooth Manifolds. Cambridge University Press, 2023.
  17. W. Bryc and J. W. Silverstein. Singular values of large non-central random matrices. Random Matrices: Theory and Applications, 9(04):2050012, 2020.
  18. Subspace estimation from unbalanced and incomplete data matrices: ℓ2,∞subscriptℓ2{\ell_{2,\infty}}roman_ℓ start_POSTSUBSCRIPT 2 , ∞ end_POSTSUBSCRIPT statistical guarantees. Annals of Statistics, 49(2):944 – 967, 2021a.
  19. Optimal structured principal subspace estimation: Metric entropy and minimax rates. Journal of Machine Learning Research, 22(46):1–45, 2021b.
  20. T. T. Cai and A. Zhang. Rate-optimal perturbation bounds for singular subspaces with applications to high-dimensional statistics. Annals of Statistics, 46(1):60 – 89, 2018.
  21. Sparse PCA: Optimal rates and adaptive estimation. Annals of Statistics, 41(6):3074 – 3110, 2013.
  22. The two-to-infinity norm and singular subspace geometry with applications to high-dimensional statistics. Annals of Statistics, 47(5):2405 – 2439, 2019.
  23. The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. The Annals of Probability, 37(1):1 – 47, 2009.
  24. S. Chatterjee. Matrix estimation by universal singular value thresholding. Annals of Statistics, 43(1):177 – 214, 2015.
  25. Partial recovery for top-k ranking: optimality of MLE and suboptimality of the spectral method. Annals of Statistics, 50(3):1618–1652, 2022.
  26. Asymmetry helps: Eigenvalue and eigenvector analyses of asymmetrically perturbed low-rank matrices. Annals of Statistics, 49(1):435, 2021a.
  27. Spectral methods for data science: A statistical perspective. Foundations and Trends in Machine Learning, 14(5):566–806, 2021b.
  28. Tackling small eigen-gaps: Fine-grained eigenvector estimation and inference under heteroscedastic noise. IEEE Transactions on Information Theory, 67(11):7380–7419, 2021.
  29. Y. Chikuse. Statistics on Special Manifolds, volume 174 of Lecture Notes in Statistics. Springer Science & Business Media, 2012.
  30. D. Donoho and M. Gavish. Minimax risk of matrix denoising by singular value thresholding. Annals of Statistics, 42(6):2413–2440, 2014.
  31. An ℓ∞subscriptℓ\ell_{\infty}roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT eigenvector perturbation bound and its application to robust covariance estimation. Journal of Machine Learning Research, 18(207):1–42, 2018.
  32. Robust high dimensional factor models with applications to statistical machine learning. Statistical Science: a review journal of the Institute of Mathematical Statistics, 36(2):303, 2021.
  33. Asymptotic theory of eigenvectors for random matrices with diverging spikes. Journal of the American Statistical Association, 117(538):996–1009, 2022.
  34. A unifying tutorial on approximate message passing. Foundations and Trends in Machine Learning, 15(4):335–536, 2022.
  35. C. Gao and Z. Ma. Minimax rates in network analysis: Graphon estimation, community detection and hypothesis testing. Statistical Science, 36(1):16 – 33, 2021. doi: 10.1214/19-STS736.
  36. M. Gavish and D. L. Donoho. The optimal hard threshold for singular values is 4/3434/\sqrt{3}4 / square-root start_ARG 3 end_ARG. IEEE Transactions on Information Theory, 60(8):5040–5053, 2014.
  37. G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, 4 edition, 2013.
  38. F. Haddadi and A. Amini. Eigenvectors of deformed Wigner random matrices. IEEE Transactions on Information Theory, 67(2):1069–1079, 2021.
  39. Mutual information in rank-one matrix estimation. In 2016 IEEE Information Theory Workshop (ITW), pages 71–75, 2016.
  40. J. Lei and K. Z. Lin. Bias-adjusted spectral clustering in multi-layer stochastic block models. Journal of the American Statistical Association, pages 1–13, 2022.
  41. L. Lei. Unified ℓ2→∞subscriptℓ→2\ell_{2\rightarrow\infty}roman_ℓ start_POSTSUBSCRIPT 2 → ∞ end_POSTSUBSCRIPT eigenspace perturbation theory for symmetric random matrices. arXiv preprint arXiv:1909.04798, 2019.
  42. Minimax estimation of linear functions of eigenvectors in the face of small eigen-gaps. arXiv preprint arXiv:2104.03298, 2021.
  43. Iterative ranking from pair-wise comparisons. In F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors, Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc., 2012.
  44. Eigenvectors of random matrices: a survey. Journal of Combinatorial Theory, Series A, 144:361–442, 2016.
  45. Matrices with gaussian noise: optimal estimates for singular subspace perturbation. IEEE Transactions on Information Theory, 2023.
  46. A. Pajor. Metric entropy of the Grassmann manifold. In Convex Geometric Analysis, pages 181–188. Cambridge University Press, 1998.
  47. M. Peng. Eigenvalues of deformed random matrices. arXiv preprint arXiv:1205.0572, 2012.
  48. B. Recht. A simpler approach to matrix completion. Journal of Machine Learning Research, 12(12), 2011.
  49. Spectral clustering and the high-dimensional stochastic blockmodel. Annals of Statistics, 39(4):1878 – 1915, 2011.
  50. A statistical interpretation of spectral embedding: the generalised random dot product graph. Journal of the Royal Statistical Society Series B: Statistical Methodology, 84(4):1446–1473, 2022.
  51. J. W. Silverstein. The spectral radii and norms of large dimensional non-central random matrices. Stochastic Models, 10(3):525–532, 1994.
  52. Consistent latent position estimation and vertex classification for random dot product graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(1):48–57, 2013.
  53. J. A. Tropp. An introduction to matrix concentration inequalities. Foundations and Trends in Machine Learning, 8(1–2):1–230, 2015.
  54. R. Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2018.
  55. V. Vu and J. Lei. Minimax sparse principal subspace estimation in high dimensions. Annals of Statistics, 41(6):2905 – 2947, 2013.
  56. M. J. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge University Press, 2019.
  57. K. Wang. Analysis of singular subspaces under random perturbations. arXiv preprint arXiv:2403.09170, 2024.
  58. D. Xia. Normal approximation and confidence region of singular subspaces. Electronic Journal of Statistics, 15(2):3798–3851, 2021.
  59. Y. Yang and A. Barron. Information-theoretic determination of minimax rates of convergence. Annals of Statistics, pages 1564–1599, 1999.
  60. A useful variant of the Davis–Kahan theorem for statisticians. Biometrika, 102(2):315–323, 2014.
  61. Heteroskedastic PCA: Algorithm, optimality, and applications. Annals of Statistics, 50(1):53–80, 2022.
  62. Y. Zhou and Y. Chen. Deflated HeteroPCA: Overcoming the curse of ill-conditioning in heteroskedastic PCA. arXiv preprint arXiv:2303.06198, 2023.
  63. Rate-optimal subspace estimation on random graphs. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages 20283–20294. Curran Associates, Inc., 2021.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com