Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gardner transition coincides with the emergence of jamming scalings in hard spheres and disks (2410.23797v1)

Published 31 Oct 2024 in cond-mat.soft, cond-mat.dis-nn, and cond-mat.stat-mech

Abstract: The Gardner transition in structural glasses is characterized by full-replica symmetry breaking of the free-energy landscape and the onset of anomalous aging dynamics due to marginal stability. Here we show that this transition also has a structural signature in finite-dimensional glasses consisting of hard spheres and disks. By analyzing the distribution of inter-particle gaps in the simulated static configurations at different pressures, we find that the Gardner transition coincides with the emergence of two well-known jamming scalings in the gap distribution, which enables the extraction of a structural order parameter. The jamming scalings reflect a compressible effective force network formed by contact and quasi-contact gaps, while non-contact gaps that do not participate in the effective force network are incompressible. Our results suggest that the Gardner transition in hard-particle glasses is a precursor of the jamming transition. The proposed structural signature and order parameter provide a convenient approach to detecting the Gardner transition in future granular experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. D. Sherrington and S. Kirkpatrick, Solvable model of a spin-glass, Physical review letters 35, 1792 (1975).
  2. G. Parisi, Infinite number of order parameters for spin-glasses, Physical Review Letters 43, 1754 (1979).
  3. G. Parisi, A sequence of approximated solutions to the sk model for spin glasses, Journal of Physics A: Mathematical and General 13, L115 (1980).
  4. M. Mézard, G. Parisi, and M. A. Virasoro, Spin glass theory and beyond: An Introduction to the Replica Method and Its Applications, Vol. 9 (World Scientific Publishing Company, 1987).
  5. G. Parisi, Nobel lecture: Multiple equilibria, Reviews of Modern Physics 95, 030501 (2023).
  6. F. Guerra, Sum rules for the free energy in the mean field spin glass model, Fields Institute Communications 30 (2001).
  7. F. Guerra, Broken replica symmetry bounds in the mean field spin glass model, Communications in mathematical physics 233, 1 (2003).
  8. M. Talagrand, The parisi formula, Annals of mathematics , 221 (2006).
  9. D. Panchenko, The parisi ultrametricity conjecture, Annals of Mathematics , 383 (2013).
  10. E. Gardner, Spin glasses with p-spin interactions, Nuclear Physics B 257, 747 (1985).
  11. P. Urbani, Y. Jin, and H. Yoshino, The gardner glass, in Spin Glass Theory and Far Beyond: Replica Symmetry Breaking After 40 Years (World Scientific, 2023) pp. 219–238.
  12. G. Parisi, P. Urbani, and F. Zamponi, Theory of simple glasses: exact solutions in infinite dimensions (Cambridge University Press, 2020).
  13. Y. Jin and H. Yoshino, Exploring the complex free-energy landscape of the simplest glass by rheology, Nature communications 8, 14935 (2017).
  14. Q. Liao and L. Berthier, Hierarchical landscape of hard disk glasses, Physical Review X 9, 011049 (2019).
  15. A. Seguin and O. Dauchot, Experimental evidence of the gardner phase in a granular glass, Physical review letters 117, 228001 (2016).
  16. L. Kool, P. Charbonneau, and K. E. Daniels, Gardner-like crossover from variable to persistent force contacts in granular crystals, Physical Review E 106, 054901 (2022).
  17. H. Xiao, A. J. Liu, and D. J. Durian, Probing gardner physics in an active quasithermal pressure-controlled granular system of noncircular particles, Physical Review Letters 128, 248001 (2022).
  18. C. Scalliet, L. Berthier, and F. Zamponi, Absence of marginal stability in a structural glass, Physical review letters 119, 205501 (2017).
  19. C. Scalliet, L. Berthier, and F. Zamponi, Marginally stable phases in mean-field structural glasses, Physical Review E 99, 012107 (2019).
  20. W. G. Hoover, N. E. Hoover, and K. Hanson, Exact hard-disk free volumes, The Journal of Chemical Physics 70, 1837 (1979).
  21. B. D. Lubachevsky and F. H. Stillinger, Geometric properties of random disk packings, Journal of statistical Physics 60, 561 (1990).
  22. Z. Salsburg and W. Wood, Equation of state of classical hard spheres at high density, The Journal of Chemical Physics 37, 798 (1962).
  23. E. Lerner, G. Düring, and M. Wyart, Low-energy non-linear excitations in sphere packings, Soft Matter 9, 8252 (2013).
  24. Y. Jin and H. Yoshino, A jamming plane of sphere packings, Proceedings of the National Academy of Sciences 118, e2021794118 (2021).
  25. C. Brito and M. Wyart, On the rigidity of a hard-sphere glass near random close packing, Europhysics Letters 76, 149 (2006).
  26. Y.-W. Li and M. P. Ciamarra, Attraction tames two-dimensional melting: From continuous to discontinuous transitions, Phys. Rev. Lett. 124, 218002 (2020).
  27. C. H. Rycroft, VORO++: A three-dimensional Voronoi cell library in C++, Chaos: An Interdisciplinary Journal of Nonlinear Science 19, 041111 (2009).
  28. N. Grønbech-Jensen and O. Farago, Constant pressure and temperature discrete-time langevin molecular dynamics., The Journal of chemical physics 141 19, 194108 (2014).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com