Restoring Kibble-Zurek Scaling and Defect Freezing in Non-Hermitian Systems under Biorthogonal Framework (2410.23633v1)
Abstract: Non-Hermitian physics provides an effective description of open and nonequilibrium systems and hosts many novel and intriguing phenomena such as exceptional points and non-Hermitian skin effect. Despite extensive theoretical and experimental studies, however, how to properly deal with the nonadiabatic dynamics in driven non-Hermitian quantum system is still under debate. Here, we develop a theoretical framework based on time-dependent biorthogonal quantum formalism by redefining the associated state to obtain the gauge-independent transition probability, and study the nonadiabatic dynamics of a linearly driven non-Hermitian system. In contrast to the normalization method that leads to a modified Kibble-Zurek scaling behavior, our approach predicts that the defect production at exceptional points exhibits power-law scaling behaviors conforming to the Kibble-Zurek mechanism. In the fast quench regime, universal scaling behaviors are also found with respect to the initial quenching parameter, which can be explained by the impulse-adiabatic approximation. Moreover, as trespassing the PT -broken region, the phenomenon of defect freezing, i.e., violation of adiabaticity, is observed.
- S. Klaiman, U. Günther, and N. Moiseyev, Phys. Rev. Lett. 101, 080402 (2008).
- S. Malzard, C. Poli, and H. Schomerus, Phys. Rev. Lett. 115, 200402 (2015).
- Y. Ashida, Z. Gong, and M. Ueda, Advances in Physics 69, 249 (2020).
- T. Yoshida, R. Peters, and N. Kawakami, Phys. Rev. B 98, 035141 (2018).
- H. Shen and L. Fu, Phys. Rev. Lett. 121, 026403 (2018).
- E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Rev. Mod. Phys. 93, 015005 (2021).
- K. Zhang, Z. Yang, and C. Fang, Phys. Rev. Lett. 125, 126402 (2020).
- M.-H. L. Xiujuan Zhang, Tian Zhang and Y.-F. Chen, Advances in Physics: X 7, 2109431 (2022).
- S. Yao and Z. Wang, Phys. Rev. Lett. 121, 086803 (2018).
- B. Liégeois, R. Chitra, and N. Defenu, Phys. Rev. D 108, 116014 (2023).
- T. E. Lee, Phys. Rev. Lett. 116, 133903 (2016).
- F. Song, S. Yao, and Z. Wang, Phys. Rev. Lett. 123, 246801 (2019).
- Y. Xiong, J. Phys. Comm. 2, 035043 (2018).
- L. Jin and Z. Song, Phys. Rev. B 99, 081103 (2019).
- D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, Phys. Rev. Lett. 124, 056802 (2020).
- Z. Xu and S. Chen, Phys. Rev. A 103, 043325 (2021).
- K. T. Geier and P. Hauke, PRX Quantum 3, 030308 (2022).
- K. Kawabata, T. Numasawa, and S. Ryu, Phys. Rev. X 13, 021007 (2023).
- T. Yoshimura, K. Bidzhiev, and H. Saleur, Phys. Rev. B 102, 125124 (2020).
- A. McDonald, R. Hanai, and A. A. Clerk, Phys. Rev. B 105, 064302 (2022).
- L.-J. Zhai, G.-Y. Huang, and S. Yin, Phys. Rev. B 106, 014204 (2022).
- S. Maegochi, K. Ienaga, and S. Okuma, Phys. Rev. Lett. 129, 227001 (2022).
- B. Ko, J. W. Park, and Y. Shin, Nature Physics 15, 1227 (2019).
- X. Turkeshi and M. Schiró, Phys. Rev. B 107, L020403 (2023).
- B. Dóra, M. Heyl, and R. Moessner, Nature Communications 10, 10.1038/s41467-019-10048-9 (2019), arXiv:1812.08668 .
- A. Bácsi and B. Dóra, Phys. Rev. B 103, 085137 (2021).
- B. Dóra, D. Sticlet, and C. u. u. u. u. P. m. c. Moca, Phys. Rev. Lett. 128, 146804 (2022).
- B. Dóra and C. u. u. u. u. P. m. c. Moca, Phys. Rev. Lett. 124, 136802 (2020).
- B. Longstaff and E.-M. Graefe, Phys. Rev. A 100, 052119 (2019).
- M.-C. Lu, S.-H. Shi, and G. Sun, Dynamical signatures of the yang-lee edge singularity in non-hermitian systems (2024), arXiv:2407.20106 [cond-mat.quant-gas] .
- A. Mostafazadeh, Entropy 22, 10.3390/e22040471 (2020).
- H. B. Geyer, W. D. Heiss, and F. G. Scholtz, Canadian Journal of Physics 86, 1195 (2008), https://doi.org/10.1139/p08-060 .
- A. Mostafazadeh, Phys. Rev. D 98, 046022 (2018).
- D. C. Brody, Journal of Physics A: Mathematical and Theoretical 47, 10.1088/1751-8113/47/3/035305 (2014), 1308.2609 .
- E. Edvardsson, F. K. Kunst, and E. J. Bergholtz, Phys. Rev. B 99, 081302 (2019).
- S. Lieu, Phys. Rev. B 97, 045106 (2018).
- H.-B. Zeng, C.-Y. Xia, and A. del Campo, Phys. Rev. Lett. 130, 060402 (2023).
- C. De Grandi, V. Gritsev, and A. Polkovnikov, Phys. Rev. B 81, 012303 (2010).
- X. Tong, G. Xianlong, and S.-p. Kou, Phys. Rev. B 107, 104306 (2023).
- J.-S. Pan and F. Wu, Phys. Rev. A 109, 022245 (2024).