Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches (2410.22810v1)

Published 30 Oct 2024 in quant-ph

Abstract: This study systematically benchmarks several non-fault-tolerant quantum computing algorithms across four distinct optimization problems: max-cut, number partitioning, knapsack, and quantum spin glass. Our benchmark includes noisy intermediate-scale quantum (NISQ) algorithms, such as the variational quantum eigensolver, quantum approximate optimization algorithm, quantum imaginary time evolution, and imaginary time quantum annealing, with both ansatz-based and ansatz-free implementations, alongside tensor network methods and direct simulations of the imaginary-time Schr\"odinger equation. For comparative analysis, we also utilize classical simulated annealing and quantum annealing on D-Wave devices. Employing default configurations, our findings reveal that no single non-FTQC algorithm performs optimally across all problem types, underscoring the need for tailored algorithmic strategies. This work provides an objective performance baseline and serves as a critical reference point for advancing NISQ algorithms and quantum annealing platforms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  2. T. Kadowaki and H. Nishimori, Quantum annealing in the transverse ising model, Physical Review E 58, 5355 (1998).
  3. T. Albash and D. A. Lidar, Adiabatic quantum computation, Rev. Mod. Phys. 90, 015002 (2018).
  4. E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm (2014), arXiv:1411.4028 [quant-ph] .
  5. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, Science 220, 671 (1983).
  6. Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual (2024).
  7. A. Ceselli and M. Premoli, On good encodings for quantum annealer and digital optimization solvers, Scientific Reports 13, 5628 (2023).
  8. P. Amara, D. Hsu, and J. E. Straub, Global energy minimum searches using an approximate solution of the imaginary time schroedinger equation, The Journal of Physical Chemistry 97, 6715 (1993).
  9. H. Nishimori and S. Morita, Mathematical aspects of quantum annealing, Journal of Physics: Conference Series 95, 012021 (2008).
  10. S. Morita and H. Nishimori, Mathematical foundation of quantum annealing, Journal of Mathematical Physics 49, 125210 (2008).
  11. M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor Software Library for Tensor Network Calculations, SciPost Phys. Codebases , 4 (2022a).
  12. A. Lucas, Ising formulations of many np problems, Frontiers in Physics 2, 10.3389/fphy.2014.00005 (2014).
  13. A. McLachlan, A variational solution of the time-dependent schrodinger equation, Molecular Physics 8, 39 (1964).
  14. J. Johansson, P. Nation, and F. Nori, Qutip: An open-source python framework for the dynamics of open quantum systems, Computer Physics Communications 183, 1760 (2012).
  15. J. Johansson, P. Nation, and F. Nori, Qutip 2: A python framework for the dynamics of open quantum systems, Computer Physics Communications 184, 1234 (2013).
  16. M. Fishman, S. R. White, and E. M. Stoudenmire, Codebase release 0.3 for ITensor, SciPost Phys. Codebases , 4 (2022b).
  17. K. L. Pudenz, T. Albash, and D. A. Lidar, Error-corrected quantum annealing with hundreds of qubits, Nature Communications 5, 3243 (2014).
  18. A. del Campo and K. Kim, Focus on shortcuts to adiabaticity, New Journal of Physics 21, 050201 (2019).
  19. K. Takahashi, Shortcuts to adiabaticity for quantum annealing, Phys. Rev. A 95, 012309 (2017).
  20. D. Sels and A. Polkovnikov, Minimizing irreversible losses in quantum systems by local counterdiabatic driving, Proceedings of the National Academy of Sciences 114, E3909 (2017).
  21. H. Nishi, T. Kosugi, and Y.-i. Matsushita, Implementation of quantum imaginary-time evolution method on nisq devices by introducing nonlocal approximation, npj Quantum Information 7, 85 (2021).
  22. D. Wolpert and W. Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1, 67 (1997).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com