Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Nanoscale Connectomics Annotation Standards Framework (2410.22320v2)

Published 29 Oct 2024 in q-bio.NC

Abstract: The promise of large-scale, high-resolution datasets from Electron Microscopy (EM) and X-ray Microtomography (XRM) lies in their ability to reveal neural structures and synaptic connectivity, which is critical for understanding the brain. Effectively managing these complex and rapidly increasing datasets will enable new scientific insights, facilitate querying, and support secondary use across the neuroscience community. However, without effective neurodata standards that permit use of these data across multiple systems and workflows, these valuable and costly datasets risk being underutilized especially as they surpass petascale levels. These standards will promote data sharing through accessible interfaces, allow researchers to build on each other's work, and guide the development of tools and capabilities that are interoperable. Herein we outline a standards framework for creating and managing annotations originating and derived from high-resolution volumetric imaging and connectomic datasets, focusing on ensuring Findable, Accessible, Interoperable, and Reusable (FAIR) practices. The goal is to enhance collaborative efforts, boost the reliability of findings, and enable comparative analysis across growing datasets of different species and modalities. We have formed a global working group with academic and industry partners in the high-resolution volumetric data generation and analysis community, focused on identifying gaps in current EM and XRM data pipelines, and refining outlines and platforms for standardizing EM and XRM methods. This focus considers existing and past community approaches and includes examining neuronal entities, biological components, and associated metadata, while emphasizing adaptability and fostering collaboration.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. T. E. Behrens and O. Sporns, “Human connectomics,” Current opinion in neurobiology, vol. 22, no. 1, pp. 144–153, 2012.
  2. J. W. Lichtman, H. Pfister, and N. Shavit, “The big data challenges of connectomics,” Nature neuroscience, vol. 17, no. 11, pp. 1448–1454, 2014.
  3. M. Hawrylycz, M. E. Martone, G. A. Ascoli, J. G. Bjaalie, H.-W. Dong, S. S. Ghosh, J. Gillis, R. Hertzano, D. R. Haynor, P. R. Hof, et al., “A guide to the brain initiative cell census network data ecosystem,” PLoS Biology, vol. 21, no. 6, p. e3002133, 2023.
  4. K. L. Briggman, M. Helmstaedter, and W. Denk, “Wiring specificity in the direction-selectivity circuit of the retina,” Nature, vol. 471, no. 7337, pp. 183–188, 2011.
  5. T. Macpherson, A. Churchland, T. Sejnowski, J. DiCarlo, Y. Kamitani, H. Takahashi, and T. Hikida, “Natural and artificial intelligence: A brief introduction to the interplay between ai and neuroscience research,” Neural Networks, vol. 144, pp. 603–613, 2021.
  6. X. Fan and H. Markram, “A brief history of simulation neuroscience,” Frontiers in neuroinformatics, vol. 13, p. 32, 2019.
  7. J. G. White, E. Southgate, J. N. Thomson, S. Brenner, et al., “The structure of the nervous system of the nematode caenorhabditis elegans,” Philos Trans R Soc Lond B Biol Sci, vol. 314, no. 1165, pp. 1–340, 1986.
  8. S. Dorkenwald, A. Matsliah, A. R. Sterling, P. Schlegel, S.-C. Yu, C. E. McKellar, A. Lin, M. Costa, K. Eichler, Y. Yin, et al., “Neuronal wiring diagram of an adult brain,” Nature, vol. 634, no. 8032, pp. 124–138, 2024.
  9. S. S. Moghadam, F. S. Khodadad, and V. Khazaeinezhad, “An algorithmic model of decision making in the human brain,” Basic and Clinical Neuroscience, vol. 10, no. 5, p. 443, 2019.
  10. A. Zador, S. Escola, B. Richards, B. Ölveczky, Y. Bengio, K. Boahen, M. Botvinick, D. Chklovskii, A. Churchland, C. Clopath, et al., “Catalyzing next-generation artificial intelligence through neuroai,” Nature communications, vol. 14, no. 1, p. 1597, 2023.
  11. K. J. Gorgolewski, T. Auer, V. D. Calhoun, R. C. Craddock, S. Das, E. P. Duff, G. Flandin, S. S. Ghosh, T. Glatard, Y. O. Halchenko, et al., “The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments,” Scientific data, vol. 3, no. 1, pp. 1–9, 2016.
  12. R. A. Poldrack, C. J. Markiewicz, S. Appelhoff, Y. K. Ashar, T. Auer, S. Baillet, S. Bansal, L. Beltrachini, C. G. Benar, G. Bertazzoli, et al., “The past, present, and future of the brain imaging data structure (bids),” Imaging Neuroscience, vol. 2, pp. 1–19, 2024.
  13. A. J. Ropelewski, M. A. Rizzo, J. R. Swedlow, J. Huisken, P. Osten, N. Khanjani, K. Weiss, V. Bakalov, M. Engle, L. Gridley, et al., “Standard metadata for 3d microscopy,” Scientific Data, vol. 9, no. 1, p. 449, 2022.
  14. S. Dorkenwald, C. M. Schneider-Mizell, D. Brittain, A. Halageri, C. Jordan, N. Kemnitz, M. A. Castro, W. Silversmith, J. Maitin-Shephard, J. Troidl, et al., “Cave: Connectome annotation versioning engine,” bioRxiv, 2023.
  15. S. M. Plaza, J. Clements, T. Dolafi, L. Umayam, N. N. Neubarth, L. K. Scheffer, and S. Berg, “neu print: An open access tool for em connectomics,” Frontiers in Neuroinformatics, vol. 16, p. 896292, 2022.
  16. M. Consortium, J. A. Bae, M. Baptiste, C. A. Bishop, A. L. Bodor, D. Brittain, J. Buchanan, D. J. Bumbarger, M. A. Castro, B. Celii, et al., “Functional connectomics spanning multiple areas of mouse visual cortex,” BioRxiv, pp. 2021–07, 2021.
  17. S. D. Larson, L. L. Fong, A. Gupta, C. Condit, W. J. Bug, and M. E. Martone, “A formal ontology of subcellular neuroanatomy,” Frontiers in neuroinformatics, vol. 1, p. 98, 2007.
  18. J. K. Matelsky, L. M. Rodriguez, D. Xenes, T. Gion, R. Hider, B. A. Wester, and W. Gray-Roncal, “An integrated toolkit for extensible and reproducible neuroscience,” in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2413–2418, IEEE, 2021.
  19. D. Xenes, L. M. Kitchell, P. K. Rivlin, R. Brodsky, H. Gooden, J. Joyce, D. Luna, R. Norman-Tenazas, D. Ramsden, K. Romero, et al., “Neuvue: A framework and workflows for high-throughput electron microscopy connectomics proofreading,” bioRxiv, pp. 2022–07, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com