Quantum Conditional Entropies (2410.21976v1)
Abstract: Fully quantum conditional entropies play a central role in quantum information theory and cryptography, where they measure the uncertainty about a quantum system from the perspective of an observer with access to a potentially correlated system. Through a novel construction, we introduce a comprehensive family of conditional entropies that reveals a unified structure underlying all previously studied forms of quantum conditional R\'enyi entropies, organizing them within a cohesive mathematical framework. This new family satisfies a range of desiderata, including data processing inequalities, additivity under tensor products, duality relations, chain rules, concavity or convexity, and various parameter monotonicity relations. Our approach provides unified proofs that streamline and generalize prior, more specialized arguments. We also derive new insights into well-known quantities, such as Petz conditional entropies, particularly in the context of chain rules. We expect this family of entropies, along with our generalized chain rules, to find applications in quantum cryptography and information theory.
- S. Arimoto. “Information measures and capacity of order α𝛼\alphaitalic_α for discrete memoryless channels”. Topics in information theory , (1977).
- “Generalized Rényi entropy accumulation theorem and generalized quantum probability estimation”. Preprint, arXiv: 2405.05912 (2024).
- “Quantum state discrimination bounds for finite sample size”. Journal of Mathematical Physics 53(12): 122205 (2012).
- K. M. R. Audenaert and N. Datta. “α𝛼\alphaitalic_α-z-Relative Renyi Entropies”. Journal of Mathematical Physics 56: 022202 (2015).
- S. Beigi. “Sandwiched Rényi Divergence Satisfies Data Processing Inequality”. Journal of Mathematical Physics 54: 122202 (2013).
- V. P. Belavkin and P. Staszewski. “C*-algebraic Generalization of Relative Entropy and Entropy”. Annals Henri Poincaré 37: 51–58, (1982).
- “Generalized Privacy Amplification”. IEEE Transactions on Information Theory 41: 1915–1923 (1995).
- “On variational expressions for quantum relative entropies”. Letters in Mathematical Physics 107: 2239–2265 (2017).
- R. Bhatia. “Graduate Texts in Mathematics”, (1997).
- E. Carlen. “Trace inequalities and quantum entropy: an introductory course”. Entropy and the quantum 529: 73–140 (2010).
- “Some operator and trace function convexity theorems”. Linear algebra and its applications 490: 174–185 (2016).
- “Inequalities for quantum divergences and the Audenaert–Datta conjecture”. Journal of Physics A: Mathematical and Theoretical 51: 483001 (2018).
- E. Chitambar and G. Gour. “Quantum resource theories”. Reviews of Modern Physics 91: 025001 (2019).
- “Entropic uncertainty relations and their applications”. Reviews of Modern Physics 89: 015002 (2017).
- “Uncertainty Relations from Simple Entropic Properties”. Physical Review Letters 108: 210405 (2012).
- I. Devetak. “The Private Classical Capacity and Quantum Capacity of a Quantum Channel”. IEEE Transactions on Information Theory 51: 44–55 (2005).
- F. Dupuis. “Chain rules for quantum Rényi entropies”. Journal of Mathematical Physics 56(2) (2015).
- “Entropy Accumulation”. Communications in Mathematical Physics 379: 867–913 (2020).
- “Monotonicity of a relative Rényi entropy”. Journal of Mathematical Physics 54(12) (2013).
- “Monotonicity of a Relative Rényi Entropy”. Journal of Mathematical Physics 54: 122201 (2013).
- G. Gour and M. Tomamichel. “Entropy and Relative Entropy From Information-Theoretic Principles”. IEEE Transactions on Information Theory 67: 6313–6327 (2021).
- M. Hayashi. “Exponential decreasing rate of leaked information in universal random privacy amplification”. IEEE Transactions on Information Theory 57(6): 3989–4001 (2011).
- M. Hayashi. Quantum Information Theory. Springer Berlin Heidelberg (2017).
- M. Hayashi and M. Tomamichel. “Correlation detection and an operational interpretation of the Rényi mutual information”. In Proc. IEEE ISIT 2015, volume 57, pages 1447–1451, (2015).
- F. Hiai. “Log-majorization and matrix norm inequalities with application to quantum information”. Acta Scientiarum Mathematicarum pages 1–23 (2024).
- F. Hiai and A. Jenčová. “α𝛼\alphaitalic_α-z𝑧zitalic_z Rényi divergences in von Neumann algebras: data-processing inequality, reversibility, and monotonicity properties in α,z𝛼𝑧\alpha,zitalic_α , italic_z”. Preprint arXiv:2404.07617 , (2024).
- A. S. Holevo. Quantum Systems, Channels, Information. De Gruyter (2012).
- “Tight Exponential Analysis for Smoothing the Max-Relative Entropy and for Quantum Privacy Amplification”. IEEE Transactions on Information Theory 69: 1680–1694 (2023).
- “Proof of the Strong Subadditivity of Quantum-Mechanical Entropy”. Journal of Mathematical Physics 14: 1938 (1973).
- S. M. Lin and M. Tomamichel. “Investigating properties of a family of quantum Rényi divergences”. Quantum Information Processing 14(4): 1501–1512 (2015).
- S. Lloyd. “The Capacity of The Noisy Quantum Channel”. Physical Review A 55: 1613–1622 (1996).
- “On Quantum Rényi Entropies: A New Generalization and Some Properties”. Journal of Mathematical Physics 54: 122203 (2013).
- M. Mosonyi. “The strong converse exponent of discriminating infinite-dimensional quantum states”. Communications in Mathematical Physics 400(1): 83–132 (2023).
- “Geometric relative entropies and barycentric Rényi divergences”. Linear Algebra and its Applications (2024).
- “From Blackwell Dominance in Large Samples to Rényi Divergences and Back Again”. Econometrica 89: 475–506 (2021).
- D. Petz. “Quasi-entropies for Finite Quantum Systems”. Reports on Mathematical Physics 23: 57–65 (1986).
- “Advances in quantum cryptography”. Advances in Optics and Photonics 12: 1012 (2020).
- A. Rényi. “On Measures of Information and Entropy”. In Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages 547–561, (1961).
- “Mixed-state additivity properties of magic monotones based on quantum relative entropies for single-qubit states and beyond”. Quantum 8: 1492 (2024).
- R. Rubboli and M. Tomamichel. “New additivity properties of the relative entropy of entanglement and its generalizations”. Communications in Mathematical Physics 405(7): 162 (2024).
- B. Schumacher and M. A. Nielsen. “Quantum Data Processing and Error Correction”. Physical Review A 54: 2629–2635 (1996).
- M. Sion. “On general minimax theorems.”. Pacific Journal of Mathematics , (1958).
- “Sharp lower bounds on the extractable randomness from non-uniform sources”. Information and Computation 209(8): 1184–1196 (2011).
- “Multivariate trace inequalities”. Communications in Mathematical Physics 352: 37–58 (2017).
- M. Tomamichel. Quantum Information Processing with Finite Resources. volume 5, Springer International Publishing (2016).
- “Relating Different Quantum Generalizations of the Conditional Rényi Entropy”. Journal of Mathematical Physics 55: 082206 (2014).
- “A Fully Quantum Asymptotic Equipartition Property”. IEEE Transactions on Information Theory 55: 5840–5847 (2009).
- M. M. Wilde. Quantum Information Theory. Cambridge University Press (2013).
- “Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy”. Communications in Mathematical Physics 331(2): 593–622 (2014).
- H. Zhang. “From Wigner-Yanase-Dyson conjecture to Carlen-Frank-Lieb conjecture”. Advances in Mathematics 365: 107053 (2020).