Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spiders' webs in the Eremenko-Lyubich class (2410.20998v3)

Published 28 Oct 2024 in math.DS and math.CV

Abstract: Consider the entire function $f(z)=\cosh(z)$. We show that the escaping set of this function - that is, the set of points whose orbits tend to infinity under iteration - has a structure known as a "spider's web". This disproves a conjecture of Sixsmith from 2020. In fact, we show that the "fast escaping set", i.e. the set of points whose orbits tend to infinity at an iterated exponential rate, is a spider's web. This answers a question of Rippon and Stallard from 2012. We also discuss a wider class of functions to which our results apply, and state some open questions.

Summary

We haven't generated a summary for this paper yet.