Arrested development and traveling waves of active suspensions in nematic liquid crystals (2410.20734v3)
Abstract: Active particles in anisotropic, viscoelastic fluids experience competing stresses which guide their trajectories. An aligned suspension of particles can trigger a hydrodynamic bend instability, but the elasticity of the fluid can drive particle orientations back towards alignment. To study these competing effects, we examine a dilute suspension of active particles in an Ericksen-Leslie model nematic liquid crystal. An anchoring strength linking the active and passive media tunes the system between active suspension theory in Newtonian fluids in one limit, and active nematic theory in another. For extensile active stresses, beyond a critical active Ericksen number or particle concentration, the suspension first comes into alignment, then buckles via a classical bend instability. Rather than entering the fully developed roiling state observed in isotropic fluids, the development is arrested into a steady, flowing state by fluid elasticity. Arrested states of higher wavenumber appear at yet larger extensile activity, and a phase transition is identified at finite anchoring strength. If the active particles are motile, the particles can surf along the bent environment of their own creation. More exotic states are also observed, including a oscillatory 'thrashing' mode. Moment equations are derived, compared to kinetic theory simulations, and analyzed in asymptotic limits which admit exact expressions for the traveling wave speed and both particle orientation and director fields in the first arrested state.
- C. Viney, A. E. Huber, and P. Verdugo, Macromol. 26, 852 (1993).
- S. S. Suarez and A. A. Pacey, Hum. Reprod. 12, 23 (2006).
- L. J. Fauci and R. Dillon, Annu. Rev. Fluid Mech. 38, 371 (2006).
- F. C. Chrétien, Acta Obstet. Gynecol. Scand. 82, 449 (2003).
- G. Li, E. Lauga, and A. M. Ardekani, J. Non-Newtonian Fluid Mech. 297, 104655 (2021).
- P. E. Arratia, Phys. Rev. Fluids 7, 110515 (2022).
- S. E. Spagnolie and P. T. Underhill, Annu. Rev. Condens. Matter Phys. 14, 381 (2023).
- P.-G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, 1993).
- I. W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction (Crc Press, 2019).
- O. D. Lavrentovich, Curr. Opin. Colloid Interface Sci 21, 97 (2016).
- I. Aranson, Rep. Prog. Phys. (2022).
- D. Saintillan and M. J. Shelley, in Complex Fluids in Biological Systems (Springer, 2015) pp. 319–351.
- R. A. Simha and S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002).
- D. Saintillan and M. J. Shelley, Phys. Rev. Lett. 100, 178103 (2008).
- L. Ohm and M. J. Shelley, J. Fluid Mech. 942, A53 (2022).
- E. Lauga and T. Powers, Rep. Prog. Phys. 72, 096601 (2009).
- G. Gregoire and H. Chate, Phys. Rev. Lett. 92, 025702 (2004).
- M. Nagy, I. Daruka, and T. Vicsek, Physica A 373, 445 (2007).
- A. Baskaran and M. C. Marchetti, Phys. Rev. E 77, 011920 (2008).
- T. Vicsek and A. Zafeiris, Phys. Rep. 517, 71 (2012).
- H. Chaté, Annu. Rev. Condens. Matter Phys. 11, 189 (2020).
- A. Lefauve and D. Saintillan, Phys. Rev. E 89, 021002 (2014).
- A. C. H. Tsang and E. Kanso, Phys. Rev. Lett. 116, 048101 (2016).
- P. Guillamat, J. Ignés-Mullol, and F. Sagués, Nature Commun. 8, 564 (2017).
- R. Voituriez, J.-F. Joanny, and J. Prost, Europhys. Lett. 70, 404 (2005).
- S. Edwards and J. Yeomans, Europhys. Lett. 85, 18008 (2009).
- R. Green, J. Toner, and V. Vitelli, Phys. Rev. Fluids 2, 104201 (2017).
- L. Landau and E. Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon Press, Oxford, 1986).
- We direct the reader to the supplementary material.
- F. Brochard and P. G. De Gennes, J. Phys. (Paris) 31, 691 (1970).
- C. Hohenegger and M. Shelley, New Trends in the Physics and Mechanics of Biological Systems: Lecture Notes of the Les Houches Summer School. Volume 92, July 2009 92, 65 (2011).
- M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, U.K., 1988).
- B. Fornberg, A Practical Guide to Pseudospectral Methods, Vol. 1 (Cambridge University Press, 1998).
- M. G. Forest, Q. Wang, and R. Zhou, Soft Matter 11, 6393 (2015).
- M. S. Krieger, M. A. Dias, and T. R. Powers, Soft Matter (2015).
- T. G. J. Chandler and S. E. Spagnolie, Phys. Rev. Fluids (2024).
- A. Rapini and M. Papoular, J. Phys. Colloquia 30, C4 (1969).
- G. Barbero and G. Durand, J. de Physique 47, 2129 (1986).
- R. W. Ruhwandl and E. M. Terentjev, Phys. Rev. E 54, 5204 (1996).
- R. W. Ruhwandl and E. M. Terentjev, Phys. Rev. E 55, 2958 (1997).