Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Operators for Adaptive Control of Freeway Traffic (2410.20708v3)

Published 28 Oct 2024 in math.OC

Abstract: Uncertainty and delayed reactions in human driving behavior lead to stop-and-go traffic congestion on freeways. The freeway traffic dynamics are governed by the Aw-Rascle-Zhang (ARZ) traffic Partial Differential Equation (PDE) models with unknown relaxation time. Motivated by the adaptive traffic control problem, this paper presents a neural operator (NO) based adaptive boundary control design for the coupled 2$\times$2 hyperbolic systems with uncertain spatially varying in-domain coefficients and boundary parameter. In traditional adaptive control for PDEs, solving backstepping kernel online is computationally intensive, as it requires significant resources at each time step to update the estimation of coefficients. To address this challenge, we use operator learning, i.e. DeepONet, to learn the mapping from system parameters to the kernels functions. DeepONet, a class of deep neural networks designed for approximating operators, has shown strong potential for approximating PDE backstepping designs in recent studies. Unlike previous works that focus on approximating single kernel equation associated with the scalar PDE system, we extend this framework to approximate PDE kernels for a class of the first-order coupled 2$\times$2 hyperbolic kernel equations. Our approach demonstrates that DeepONet is nearly two orders of magnitude faster than traditional PDE solvers for generating kernel functions, while maintaining a loss on the order of $10{-3}$.

Summary

We haven't generated a summary for this paper yet.