Nonconserved Density Accumulations in Orbital Hall Transport: Insights from Linear Response Theory (2410.20668v3)
Abstract: We present a linear response theory for stationary density accumulations in anomalous transport phenomena, such as the orbital Hall effect, where the transported density is odd under time reversal and the underlying charge is not conserved. Our framework applies to both metals and insulators, topologically trivial or nontrivial, and distinguishes between contributions from bulk and edge states, as well as undergap and dissipative currents. In time-reversal invariant systems, we prove a microscopic reciprocity theorem showing that only dissipative currents at the Fermi level contribute to density accumulation, while undergap currents do not. In contrast, in non-time-reversal invariant systems, non-dissipative density accumulations, such as magnetoelectric polarization, can appear in both the bulk and edges. Importantly, we find that the net density accumulation does not always vanish, pointing to a global non-conservation that implies the existence of a non-vanishing integrated net torque'' in addition to a
distributed torque'', which has zero spatial average. We show that the distributed torque can be absorbed in the divergence of a redefined current that satisfies Onsager reciprocity, while the net torque must be explicitly accounted for. Finally, we apply our theory to two-dimensional models with edge terminations.
- F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
- B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).
- C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005a).
- C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005b).
- J. Maciejko, T. L. Hughes, and S.-C. Zhang, Annu. Rev. Condens. Matter Phys. 2, 31 (2011).
- I. Sodemann and L. Fu, Phys. Rev. Lett. 115, 216806 (2015).
- K. von Klitzing, Rev. Mod. Phys. 58, 519 (1986).
- Y. Zhang, Y. Sun, and B. Yan, Phys. Rev. B 97, 041101 (2018).
- C.-X. Liu, S.-C. Zhang, and X.-L. Qi, Annu. Rev. Condens. Matter Phys. 7, 301 (2016).
- J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).
- S. Takahashi and S. Maekawa, Science and Technology of Advanced Materials 9, 014105 (2008), pMID: 27877931.
- T. Tanaka and H. Kontani, Phys. Rev. B 81, 224401 (2010).
- G. Sundaram and Q. Niu, Phys. Rev. B 59, 14915 (1999).
- D. Vanderbilt, Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge University Press, Cambridge, 2018).
- D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010).
- N. A. Sinitsyn, J. Phys. Condens. Matter 20, 023201 (2007).
- E. Drigo and R. Resta, Phys. Rev. B 101, 165120 (2020).
- M. Milletarì and A. Ferreira, Phys. Rev. B 94, 134202 (2016).
- H. Ishizuka and N. Nagaosa, Sci. Adv. 4, eaap9962 (2018).
- M.-C. Chang and Q. Niu, Phys. Rev. B 53, 7010 (1996).
- G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, 2005).
- I. Garate and M. Franz, Phys. Rev. Lett. 104, 146802 (2010).
- L. Salemi and P. M. Oppeneer, Phys. Rev. Mater. 6, 095001 (2022).
- A. Pezo, D. García Ovalle, and A. Manchon, Phys. Rev. B 108, 075427 (2023).
- S. Bhowal and G. Vignale, Phys. Rev. B 103, 195309 (2021).
- D. Go and H.-W. Lee, Phys. Rev. Res. 2, 013177 (2020).
- D. Xiao, W. Yao, and Q. Niu, Phys. Rev. Lett. 99, 236809 (2007).
- K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
- J. Sakurai and J. Napolitano, Modern Quantum Mechanics (Cambridge University Press, 2020).
- V. Edelstein, Solid State Commun. 73, 233 (1990).