Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonconserved Density Accumulations in Orbital Hall Transport: Insights from Linear Response Theory (2410.20668v3)

Published 28 Oct 2024 in cond-mat.mes-hall

Abstract: We present a linear response theory for stationary density accumulations in anomalous transport phenomena, such as the orbital Hall effect, where the transported density is odd under time reversal and the underlying charge is not conserved. Our framework applies to both metals and insulators, topologically trivial or nontrivial, and distinguishes between contributions from bulk and edge states, as well as undergap and dissipative currents. In time-reversal invariant systems, we prove a microscopic reciprocity theorem showing that only dissipative currents at the Fermi level contribute to density accumulation, while undergap currents do not. In contrast, in non-time-reversal invariant systems, non-dissipative density accumulations, such as magnetoelectric polarization, can appear in both the bulk and edges. Importantly, we find that the net density accumulation does not always vanish, pointing to a global non-conservation that implies the existence of a non-vanishing integrated net torque'' in addition to adistributed torque'', which has zero spatial average. We show that the distributed torque can be absorbed in the divergence of a redefined current that satisfies Onsager reciprocity, while the net torque must be explicitly accounted for. Finally, we apply our theory to two-dimensional models with edge terminations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
  2. B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).
  3. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005a).
  4. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005b).
  5. J. Maciejko, T. L. Hughes, and S.-C. Zhang, Annu. Rev. Condens. Matter Phys. 2, 31 (2011).
  6. I. Sodemann and L. Fu, Phys. Rev. Lett. 115, 216806 (2015).
  7. K. von Klitzing, Rev. Mod. Phys. 58, 519 (1986).
  8. Y. Zhang, Y. Sun, and B. Yan, Phys. Rev. B 97, 041101 (2018).
  9. C.-X. Liu, S.-C. Zhang, and X.-L. Qi, Annu. Rev. Condens. Matter Phys. 7, 301 (2016).
  10. J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).
  11. S. Takahashi and S. Maekawa, Science and Technology of Advanced Materials 9, 014105 (2008), pMID: 27877931.
  12. T. Tanaka and H. Kontani, Phys. Rev. B 81, 224401 (2010).
  13. G. Sundaram and Q. Niu, Phys. Rev. B 59, 14915 (1999).
  14. D. Vanderbilt, Berry Phases in Electronic Structure Theory: Electric Polarization, Orbital Magnetization and Topological Insulators (Cambridge University Press, Cambridge, 2018).
  15. D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010).
  16. N. A. Sinitsyn, J. Phys. Condens. Matter 20, 023201 (2007).
  17. E. Drigo and R. Resta, Phys. Rev. B 101, 165120 (2020).
  18. M. Milletarì and A. Ferreira, Phys. Rev. B 94, 134202 (2016).
  19. H. Ishizuka and N. Nagaosa, Sci. Adv. 4, eaap9962 (2018).
  20. M.-C. Chang and Q. Niu, Phys. Rev. B 53, 7010 (1996).
  21. G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, 2005).
  22. I. Garate and M. Franz, Phys. Rev. Lett. 104, 146802 (2010).
  23. L. Salemi and P. M. Oppeneer, Phys. Rev. Mater. 6, 095001 (2022).
  24. A. Pezo, D. García Ovalle, and A. Manchon, Phys. Rev. B 108, 075427 (2023).
  25. S. Bhowal and G. Vignale, Phys. Rev. B 103, 195309 (2021).
  26. D. Go and H.-W. Lee, Phys. Rev. Res. 2, 013177 (2020).
  27. D. Xiao, W. Yao, and Q. Niu, Phys. Rev. Lett. 99, 236809 (2007).
  28. K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
  29. J. Sakurai and J. Napolitano, Modern Quantum Mechanics (Cambridge University Press, 2020).
  30. V. Edelstein, Solid State Commun. 73, 233 (1990).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com