Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Search for pair production of heavy particles decaying to a top quark and a gluon in the lepton+jets final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV (2410.20601v2)

Published 27 Oct 2024 in hep-ex

Abstract: A search is presented for the pair production of new heavy resonances, each decaying into a top quark (t) or antiquark and a gluon (g). The analysis uses data recorded with the CMS detector from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to an integrated luminosity of 138 fb${-1}$. Events with one muon or electron, multiple jets, and missing transverse momentum are selected. After using a deep neural network to enrich the data sample with signal-like events, distributions in the scalar sum of the transverse momenta of all reconstructed objects are analyzed in the search for a signal. No significant deviations from the standard model prediction are found. Upper limits at 95% confidence level are set on the product of cross section and branching fraction squared for the pair production of excited top quarks in the $\mathrm{t*}$ $\to$ tg decay channel. The upper limits range from 120 to 0.8 fb for a $\mathrm{t*}$ with spin-1/2 and from 15 to 1.0 fb for a $\mathrm{t*}$ with spin-3/2. These correspond to mass exclusion limits up to 1050 and 1700 GeV for spin-1/2 and spin-3/2 $\mathrm{t*}$ particles, respectively. These are the most stringent limits to date on the existence of $\mathrm{t*}$ $\to$ tg resonances.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (85)
  1. ATLAS Collaboration, “Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B 716 (2012) 1, 10.1016/j.physletb.2012.08.020, arXiv:1207.7214.
  2. CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, Phys. Lett. B 716 (2012) 30, 10.1016/j.physletb.2012.08.021, arXiv:1207.7235.
  3. CMS Collaboration, “Observation of a new boson with mass near 125 GeV in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 7 and 8 TeV”, JHEP 06 (2013) 081, 10.1007/JHEP06(2013)081, arXiv:1303.4571.
  4. H. Georgi, L. Kaplan, D. Morin, and A. Schenk, “Effects of top compositeness”, Phys. Rev. D 51 (1995) 3888, 10.1103/PhysRevD.51.3888, arXiv:hep-ph/9410307.
  5. B. Lillie, J. Shu, and T. M. P. Tait, “Top compositeness at the Tevatron and LHC”, JHEP 04 (2008) 087, 10.1088/1126-6708/2008/04/087, arXiv:0712.3057.
  6. A. Pomarol and J. Serra, “Top quark compositeness: Feasibility and implications”, Phys. Rev. D 78 (2008) 074026, 10.1103/PhysRevD.78.074026, arXiv:0806.3247.
  7. K. Kumar, T. M. P. Tait, and R. Vega-Morales, “Manifestations of top compositeness at colliders”, JHEP 05 (2009) 022, 10.1088/1126-6708/2009/05/022, arXiv:0901.3808.
  8. T. A. DeGrand et al., “Towards partial compositeness on the lattice: Baryons with fermions in multiple representations”, in Proceedings of 34th annual International Symposium on Lattice Field Theory – PoS(LATTICE2016), p. 219. 2016. arXiv:1610.06465. 10.22323/1.256.0219.
  9. A. Pierce and Y. Zhao, “Naturalness from a composite top?”, JHEP 01 (2017) 054, 10.1007/JHEP01(2017)054, arXiv:1607.01318.
  10. D. Buarque Franzosi and A. Tonero, “Top-quark partial compositeness beyond the effective field theory paradigm”, JHEP 04 (2020) 040, 10.1007/JHEP04(2020)040, arXiv:1908.06996.
  11. N. Arkani-Hamed, A. G. Cohen, E. Katz, and A. E. Nelson, “The littlest Higgs”, JHEP 07 (2002) 034, 10.1088/1126-6708/2002/07/034, arXiv:hep-ph/0206021.
  12. N. Arkani-Hamed, A. G. Cohen, and H. Georgi, “Electroweak symmetry breaking from dimensional deconstruction”, Phys. Lett. B 513 (2001) 232, 10.1016/S0370-2693(01)00741-9, arXiv:hep-ph/0105239.
  13. M. Perelstein, “Little Higgs models and their phenomenology”, Prog. Part. Nucl. Phys. 58 (2007) 247, 10.1016/j.ppnp.2006.04.001, arXiv:hep-ph/0512128.
  14. A. Ahmed, M. Lindner, and P. Saake, “Conformal little Higgs models”, Phys. Rev. D 109 (2024) 075041, 10.1103/PhysRevD.109.075041, arXiv:2309.07845.
  15. L. Randall and R. Sundrum, “A large mass hierarchy from a small extra dimension”, Phys. Rev. Lett. 83 (1999) 3370, 10.1103/PhysRevLett.83.3370, arXiv:hep-ph/9905221.
  16. T. Gherghetta and A. Pomarol, “Bulk fields and supersymmetry in a slice of AdS”, Nucl. Phys. B 586 (2000) 141, 10.1016/S0550-3213(00)00392-8, arXiv:hep-ph/0003129.
  17. S. B. Giddings, S. Kachru, and J. Polchinski, “Hierarchies from fluxes in string compactifications”, Phys. Rev. D 66 (2002) 106006, 10.1103/PhysRevD.66.106006, arXiv:hep-th/0105097.
  18. K. Agashe, R. Contino, and A. Pomarol, “The minimal composite Higgs model”, Nucl. Phys. B 719 (2005) 165, 10.1016/j.nuclphysb.2005.04.035, arXiv:hep-ph/0412089.
  19. CMS Collaboration, “Search for pair production of vector-like quarks in the \PQb⁢\PW⁢\PAQb⁢\PW\PQb\PW\PAQb\PW\PQb\PW\PAQb\PW channel from proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Lett. B 779 (2018) 82, 10.1016/j.physletb.2018.01.077, arXiv:1710.01539.
  20. CMS Collaboration, “Search for electroweak production of a vector-like T quark using fully hadronic final states”, JHEP 01 (2020) 036, 10.1007/JHEP01(2020)036, arXiv:1909.04721.
  21. CMS Collaboration, “Search for single production of a vector-like T quark decaying to a top quark and a \PZ boson in the final state with jets and missing transverse momentum at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 05 (2022) 093, 10.1007/JHEP05(2022)093, arXiv:2201.02227.
  22. CMS Collaboration, “Search for pair production of vector-like quarks in leptonic final states in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 07 (2023) 020, 10.1007/JHEP07(2023)020, arXiv:2209.07327.
  23. ATLAS Collaboration, “Search for pair-produced vector-like top and bottom partners in events with large missing transverse momentum in pp collisions with the ATLAS detector”, Eur. Phys. J. C 83 (2023) 719, 10.1140/epjc/s10052-023-11790-7, arXiv:2212.05263.
  24. ATLAS Collaboration, “Search for pair-production of vector-like quarks in pp collision events at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV with at least one leptonically decaying \PZ boson and a third-generation quark with the ATLAS detector”, Phys. Lett. B 843 (2023) 138019, 10.1016/j.physletb.2023.138019, arXiv:2210.15413.
  25. ATLAS Collaboration, “Search for singly produced vector-like top partners in multilepton final states with 139 fb−1superscriptfb1\mathrm{fb}^{-1}roman_fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of pp collision data at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, Phys. Rev. D 109 (2024) 112012, 10.1103/PhysRevD.109.112012, arXiv:2307.07584.
  26. H. Alhazmi, J. H. Kim, K. Kong, and I. M. Lewis, “Shedding light on top partner at the LHC”, JHEP 01 (2019) 139, 10.1007/JHEP01(2019)139, arXiv:1808.03649.
  27. J. Berger, J. Hubisz, and M. Perelstein, “A fermionic top partner: Naturalness and the LHC”, JHEP 07 (2012) 016, 10.1007/JHEP07(2012)016, arXiv:1205.0013.
  28. W. Rarita and J. Schwinger, “On a theory of particles with half integral spin”, Phys. Rev. 60 (1941) 61, 10.1103/PhysRev.60.61.
  29. CMS Collaboration, “Search for pair production of excited top quarks in the lepton+jets final state”, JHEP 06 (2014) 125, 10.1007/JHEP06(2014)125, arXiv:1311.5357.
  30. CMS Collaboration, “Search for pair production of excited top quarks in the lepton+jets final state”, Phys. Lett. B 778 (2018) 349, 10.1016/j.physletb.2018.01.049, arXiv:1711.10949.
  31. HEPData record for this analysis, 2024. 10.17182/hepdata.153717.
  32. CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, 10.1088/1748-0221/3/08/S08004.
  33. CMS Collaboration, “Development of the CMS detector for the CERN LHC Run 3”, JINST 19 (2024) P05064, 10.1088/1748-0221/19/05/P05064, arXiv:2309.05466.
  34. CMS Collaboration, “Performance of the CMS level-1 trigger in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 15 (2020) P10017, 10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.
  35. CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
  36. J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, 10.1007/JHEP07(2014)079, arXiv:1405.0301.
  37. D. A. Dicus, D. Karabacak, S. Nandi, and S. K. Rai, “Search for spin-3/2 quarks at the Large Hadron Collider”, Phys. Rev. D 87 (2013) 015023, 10.1103/PhysRevD.87.015023, arXiv:1208.5811.
  38. P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, JHEP 11 (2004) 040, 10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.
  39. S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: The POWHEG method”, JHEP 11 (2007) 070, 10.1088/1126-6708/2007/11/070, arXiv:0709.2092.
  40. S. Frixione, P. Nason, and G. Ridolfi, “A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction”, JHEP 09 (2007) 126, 10.1088/1126-6708/2007/09/126, arXiv:0707.3088.
  41. S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: The POWHEG BOX”, JHEP 06 (2010) 043, 10.1007/JHEP06(2010)043, arXiv:1002.2581.
  42. E. Re, “Single-top \PW⁢\PQt\PW\PQt{\PW}{\PQt}-channel production matched with parton showers using the POWHEG method”, Eur. Phys. J. C 71 (2011) 1547, 10.1140/epjc/s10052-011-1547-z, arXiv:1009.2450.
  43. M. Czakon and A. Mitov, “Top++: A program for the calculation of the top-pair cross-section at hadron colliders”, Comput. Phys. Commun. 185 (2014) 2930, 10.1016/j.cpc.2014.06.021, arXiv:1112.5675.
  44. T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, 10.1016/j.cpc.2015.01.024, arXiv:1410.3012.
  45. NNPDF Collaboration, “Parton distributions from high-precision collider data”, Eur. Phys. J. C 77 (2017) 663, 10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428.
  46. CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, Eur. Phys. J. C 76 (2016) 155, 10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.
  47. GEANT4 Collaboration, “\GEANTfour—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, 10.1016/S0168-9002(03)01368-8.
  48. CMS Collaboration, “Measurement of the inelastic proton-proton cross section at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 07 (2018) 161, 10.1007/JHEP07(2018)161, arXiv:1802.02613.
  49. CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, 10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
  50. CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 13 (2018) P06015, 10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.
  51. CMS Collaboration, “Performance of CMS muon reconstruction in pp collision events at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 7 TeV”, JINST 7 (2012) P10002, 10.1088/1748-0221/7/10/P10002, arXiv:1206.4071.
  52. CMS Collaboration, “Performance of the reconstruction and identification of high-momentum muons in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 15 (2020) P02027, 10.1088/1748-0221/15/02/P02027, arXiv:1912.03516.
  53. CMS Collaboration, “Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC”, JINST 16 (2021) P05014, 10.1088/1748-0221/16/05/P05014, arXiv:2012.06888.
  54. CMS Collaboration, “ECAL 2016 refined calibration and Run2 summary plots”, CMS Detector Performance Summary CMS-DP-2020-021, 2020.
  55. M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\ktjet clustering algorithm”, JHEP 04 (2008) 063, 10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
  56. M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, 10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.
  57. D. Bertolini, P. Harris, M. Low, and N. Tran, “Pileup per particle identification”, JHEP 10 (2014) 059, 10.1007/JHEP10(2014)059, arXiv:1407.6013.
  58. CMS Collaboration, “Pileup mitigation at CMS in 13 TeV data”, JINST 15 (2020) P09018, 10.1088/1748-0221/15/09/P09018, arXiv:2003.00503.
  59. CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017) P02014, 10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.
  60. T. Lapsien, R. Kogler, and J. Haller, “A new tagger for hadronically decaying heavy particles at the LHC”, Eur. Phys. J. C 76 (2016) 600, 10.1140/epjc/s10052-016-4443-8, arXiv:1606.04961.
  61. M. Cacciari, G. P. Salam, and G. Soyez, “The catchment area of jets”, JHEP 04 (2008) 005, 10.1088/1126-6708/2008/04/005, arXiv:0802.1188.
  62. CMS Collaboration, “Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques”, JINST 15 (2020) P06005, 10.1088/1748-0221/15/06/P06005, arXiv:2004.08262.
  63. R. Kogler, “Advances in jet substructure at the LHC: Algorithms, measurements and searches for new physical phenomena”, volume 284 of Springer Tracts Mod. Phys. Springer, 2021. 10.1007/978-3-030-72858-8, ISBN 978-3-030-72857-1, 978-3-030-72858-8.
  64. J. Thaler and K. Van Tilburg, “Identifying boosted objects with N𝑁Nitalic_N-subjettiness”, JHEP 03 (2011) 015, 10.1007/JHEP03(2011)015, arXiv:1011.2268.
  65. J. Thaler and K. Van Tilburg, “Maximizing boosted top identification by minimizing N𝑁Nitalic_N-subjettiness”, JHEP 02 (2012) 093, 10.1007/JHEP02(2012)093, arXiv:1108.2701.
  66. CMS Collaboration, “Search for a heavy resonance decaying into a top quark and a W boson in the lepton+jets final state at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 04 (2022) 048, 10.1007/JHEP04(2022)048, arXiv:2111.10216.
  67. CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”, JINST 13 (2018) P05011, 10.1088/1748-0221/13/05/P05011, arXiv:1712.07158.
  68. E. Bols et al., “Jet flavour classification using DeepJet”, JINST 15 (2020) P12012, 10.1088/1748-0221/15/12/P12012, arXiv:2008.10519.
  69. CMS Collaboration, “Performance summary of AK4 jet \PQb tagging with data from proton-proton collisions at 13 TeV with the CMS detector”, Technical Report CMS-DP-2023-005, 2023.
  70. CMS Collaboration, “Performance of missing transverse momentum reconstruction in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV using the CMS detector”, JINST 14 (2019) P07004, 10.1088/1748-0221/14/07/P07004, arXiv:1903.06078.
  71. CMS Collaboration, “Search for resonant t⁢t¯t¯t\mathrm{t}\overline{\mathrm{t}}roman_t over¯ start_ARG roman_t end_ARG production in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 04 (2019) 031, 10.1007/JHEP04(2019)031, arXiv:1810.05905.
  72. J. Dolen et al., “Thinking outside the ROCs: Designing decorrelated taggers (DDT) for jet substructure”, JHEP 05 (2016) 156, 10.1007/JHEP05(2016)156, arXiv:1603.00027.
  73. CMS Collaboration, “Measurement of the differential cross section for top quark pair production in pp collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 8 TeV”, Eur. Phys. J. C 75 (2015) 542, 10.1140/epjc/s10052-015-3709-x, arXiv:1505.04480.
  74. CMS Collaboration, “Measurement of the \ttbar\ttbar\ttbar production cross section in the all-jets final state in pp collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 8 TeV”, Eur. Phys. J. C 76 (2016) 128, 10.1140/epjc/s10052-016-3956-5, arXiv:1509.06076.
  75. CMS Collaboration, “The CMS statistical analysis and combination tool: COMBINE”, 2024. arXiv:2404.06614. Accepted by Comput. Softw. Big Sci.
  76. CMS Collaboration, “Precision luminosity measurement in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV in 2015 and 2016 at CMS”, Eur. Phys. J. C 81 (2021) 800, 10.1140/epjc/s10052-021-09538-2, arXiv:2104.01927.
  77. CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2018.
  78. CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-18-002, 2019.
  79. J. Butterworth et al., “PDF4LHC recommendations for LHC Run II”, J. Phys. G 43 (2016) 023001, 10.1088/0954-3899/43/2/023001, arXiv:1510.03865.
  80. ATLAS and CMS Collaborations, and LHC Higgs Combination Group, “Procedure for the LHC Higgs boson search combination in Summer 2011”, CMS Note CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011.
  81. A. L. Read, “Presentation of search results: The CLss{}_{\text{s}}start_FLOATSUBSCRIPT s end_FLOATSUBSCRIPT technique”, J. Phys. G 28 (2002) 2693, 10.1088/0954-3899/28/10/313.
  82. T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, 10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.
  83. G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 71 (2011) 1554, 10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727. [Erratum: \DOI10.1140/epjc/s10052-013-2501-z].
  84. W. Verkerke and D. P. Kirkby, “The RooFit toolkit for data modeling”, in Proc. Int. Conf on Computing in High Energy and Nuclear Physics (CHEP03), L. Lyons and M. Karagoz, eds., p. MOLT007. 2003. arXiv:physics/0306116.
  85. L. Moneta et al., “The RooStats project”, in Proc. 13th Int. Workshop on Advanced Computing and Analysis Techniques in Physics Research, T. Speer et al., eds., volume ACAT2010, p. 057. 2010. arXiv:1009.1003. 10.22323/1.093.0057.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com