Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Deep Learning based RMT Data Inversion using Gaussian Random Field (2410.19858v1)

Published 22 Oct 2024 in cs.LG, cs.CE, eess.SP, and physics.geo-ph

Abstract: Deep learning (DL) methods have emerged as a powerful tool for the inversion of geophysical data. When applied to field data, these models often struggle without additional fine-tuning of the network. This is because they are built on the assumption that the statistical patterns in the training and test datasets are the same. To address this, we propose a DL-based inversion scheme for Radio Magnetotelluric data where the subsurface resistivity models are generated using Gaussian Random Fields (GRF). The network's generalization ability was tested with an out-of-distribution (OOD) dataset comprising a homogeneous background and various rectangular-shaped anomalous bodies. After end-to-end training with the GRF dataset, the pre-trained network successfully identified anomalies in the OOD dataset. Synthetic experiments confirmed that the GRF dataset enhances generalization compared to a homogeneous background OOD dataset. The network accurately recovered structures in a checkerboard resistivity model, and demonstrated robustness to noise, outperforming traditional gradient-based methods. Finally, the developed scheme is tested using exemplary field data from a waste site near Roorkee, India. The proposed scheme enhances generalization in a data-driven supervised learning framework, suggesting a promising direction for OOD generalization in DL methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. P. Yogeshwar, B. Tezkan, M. Israil, and M. Candansayar, “Groundwater contamination in the roorkee area, india: 2d joint inversion of radiomagnetotelluric and direct current resistivity data,” Journal of Applied Geophysics, vol. 76, pp. 127–135, 2012.
  2. C. Shan, M. Bastani, A. Malehmir, L. Persson, and E. Lundberg, “Integration of controlled-source and radio magnetotellurics, electric resistivity tomography, and reflection seismics to delineate 3d structures of a quick-clay landslide site in southwest of sweden,” Geophysics, vol. 81, no. 1, pp. B13–B29, 2016.
  3. S. Wang, M. Bastani, S. Constable, T. Kalscheuer, and A. Malehmir, “Boat-towed radio-magnetotelluric and controlled source audio-magnetotelluric study to resolve fracture zones at äspö hard rock laboratory site, sweden,” Geophysical Journal International, vol. 218, no. 2, pp. 1008–1031, 2019.
  4. S. C. Constable, R. L. Parker, and C. G. Constable, “Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data,” Geophysics, vol. 52, no. 3, pp. 289–300, 1987.
  5. X. Shi and J. Wang, “One dimensional magnetotelluric sounding inversion using simulated annealing,” Earth Science-Journal of China University of Geosciences (in Chinese), vol. 23, no. 5, pp. 542–546, 1998.
  6. S. P. Sharma, “Vfsares—a very fast simulated annealing fortran program for interpretation of 1-d dc resistivity sounding data from various electrode arrays,” Computers & Geosciences, vol. 42, pp. 177–188, 2012.
  7. A. Schultz, “Two-dimensional nonlinear magnetotelluric inversion using a genetic algorithm,” Journal of geomagnetism and geoelectricity, vol. 45, no. 9, pp. 1013–1026, 1993.
  8. H. WANG, M. LIU, Z. XI, X. PENG, and H. HE, “Magnetotelluric inversion based on bp neural network optimized by genetic algorithm,” Chinese Journal of Geophysics, vol. 61, no. 4, pp. 1563–1575, 2018.
  9. J. Liu, W. Hu, and X. Hu, “Two-dimensional magnetotelluric inversion using differential ant-stigmergy algorithm,” Oil Geophysical Prospecting, vol. 50, no. 3, pp. 548–555, 2015.
  10. R. Shaw and S. Srivastava, “Particle swarm optimization: A new tool to invert geophysical data,” Geophysics, vol. 72, no. 2, pp. F75–F83, 2007.
  11. X.-M. SHI, M. XIAO, J.-K. FAN, G.-S. YANG, and X.-H. ZHANG, “The damped pso algorithm and its application for magnetotelluric sounding data inversion,” Chinese Journal of Geophysics, vol. 52, no. 4, pp. 1114–1120, 2009.
  12. Z. Liu, H. Chen, Z. Ren, J. Tang, Z. Xu, Y. Chen, and X. Liu, “Deep learning audio magnetotellurics inversion using residual-based deep convolution neural network,” Journal of Applied Geophysics, vol. 188, p. 104309, 2021.
  13. X. Liao, Z. Zhang, Q. Yan, Z. Shi, K. Xu, and D. Jia, “Inversion of 1-d magnetotelluric data using cnn-lstm hybrid network,” Arabian Journal of Geosciences, vol. 15, no. 17, p. 1430, 2022.
  14. X. Liu, J. A. Craven, and V. Tschirhart, “Retrieval of subsurface resistivity from magnetotelluric data using a deep-learning-based inversion technique,” Minerals, vol. 13, no. 4, p. 461, 2023.
  15. W. Ling, K. Pan, Z. Ren, W. Xiao, D. He, S. Hu, Z. Liu, and J. Tang, “One-dimensional magnetotelluric parallel inversion using a resnet1d-8 residual neural network,” Computers & Geosciences, vol. 180, p. 105454, 2023.
  16. M. Rahmani Jevinani, B. Habibian Dehkordi, I. J. Ferguson, and M. H. Rohban, “Deep learning-based 1-d magnetotelluric inversion: performance comparison of architectures,” Earth Science Informatics, pp. 1–15, 2024.
  17. H. Wang, Y. Liu, C. Yin, J. Li, Y. Su, and B. Xiong, “Stochastic inversion of magnetotelluric data using deep reinforcement learning,” Geophysics, vol. 87, no. 1, pp. E49–E61, 2022.
  18. O. Rodriguez, J. M. Taylor, and D. Pardo, “Multimodal variational autoencoder for inverse problems in geophysics: application to a 1-d magnetotelluric problem,” Geophysical Journal International, vol. 235, no. 3, pp. 2598–2613, 2023.
  19. H. Wang, W. Liu, Z.-z. Xi, and J.-h. Fang, “Nonlinear inversion for magnetotelluric sounding based on deep belief network,” Journal of Central South University, vol. 26, no. 9, pp. 2482–2494, 2019.
  20. R. Guo, M. Li, F. Yang, S. Xu, and A. Abubakar, “Regularized supervised descent method for 2-d magnetotelluric data inversion,” in SEG International Exposition and Annual Meeting.   SEG, 2019, p. D033S077R004.
  21. W. Liu, Z. Xi, H. Wang, and R. Zhang, “Two-dimensional deep learning inversion of magnetotelluric sounding data,” Journal of Geophysics and Engineering, vol. 18, no. 5, pp. 627–641, 2021.
  22. Y. Jin, Y. Hu, X. Wu, and J. Chen, “Rnn-based gradient prediction for solving magnetotelluric inverse problem,” in SEG International Exposition and Annual Meeting.   SEG, 2020, p. D041S085R004.
  23. X. Liao, Z. Shi, Z. Zhang, Q. Yan, and P. Liu, “2d inversion of magnetotelluric data using deep learning technology,” Acta Geophysica, vol. 70, no. 3, pp. 1047–1060, 2022.
  24. L. Xie, B. Han, X. Hu, and N. Bai, “2d magnetotelluric inversion based on resnet,” Artificial Intelligence in Geosciences, vol. 4, pp. 119–127, 2023.
  25. H. Wang, Y. Liu, C. Yin, Y. Su, B. Zhang, and X. Ren, “Flexible and accurate prior model construction based on deep learning for 2-d magnetotelluric data inversion,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–11, 2023.
  26. A. Minakov, H. Keers, D. Kolyukhin, and H. C. Tengesdal, “Acoustic waveform inversion for ocean turbulence,” Journal of Physical Oceanography, vol. 47, no. 6, pp. 1473–1491, 2017.
  27. K. Wu, M. I. Van Dijke, G. D. Couples, Z. Jiang, J. Ma, K. S. Sorbie, J. Crawford, I. Young, and X. Zhang, “3d stochastic modelling of heterogeneous porous media–applications to reservoir rocks,” Transport in porous media, vol. 65, pp. 443–467, 2006.
  28. E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE signal processing magazine, vol. 25, no. 2, pp. 21–30, 2008.
  29. C. G. Graff and E. Y. Sidky, “Compressive sensing in medical imaging,” Applied optics, vol. 54, no. 8, pp. C23–C44, 2015.
  30. C. Fan, L. Wang, P. Liu, K. Lu, and D. Liu, “Compressed sensing based remote sensing image reconstruction via employing similarities of reference images,” Multimedia tools and applications, vol. 75, pp. 12 201–12 225, 2016.
  31. M. Zhang, “Time-lapse seismic data reconstruction using compressive sensing,” Geophysics, vol. 86, no. 5, pp. P37–P48, 2021.
  32. A. Gholami, “Non-convex compressed sensing with frequency mask for seismic data reconstruction and denoising,” Geophysical Prospecting, vol. 62, no. 6, pp. 1389–1405, 2014.
  33. J. B. Muir and Z. Zhan, “Seismic wavefield reconstruction using a pre-conditioned wavelet–curvelet compressive sensing approach,” Geophysical Journal International, vol. 227, no. 1, pp. 303–315, 2021.
  34. C. O’Neill, “Compressed sensing reconstruction of sparse geophysical data: an example from regional magnetics,” Exploration Geophysics, vol. 55, no. 2, pp. 139–152, 2024.
  35. S. Ranjan, B. Kambhammettu, S. R. Peddinti, and J. Adinarayana, “A compressed sensing based 3d resistivity inversion algorithm for hydrogeological applications,” Journal of Applied Geophysics, vol. 151, pp. 318–327, 2018.
  36. A. Singh, V. Kharti, P. K. Gupta, and M. Israil, “Interpretation of geophysical data using block inversion algorithm: 2d magnetotelluric case,” in SEG Technical Program Expanded Abstracts 2014.   Society of Exploration Geophysicists, 2014, pp. 860–864.
  37. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.   Springer, 2015, pp. 234–241.
  38. B. Liu, Q. Guo, S. Li, B. Liu, Y. Ren, Y. Pang, X. Guo, L. Liu, and P. Jiang, “Deep learning inversion of electrical resistivity data,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 8, pp. 5715–5728, 2020.
  39. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  40. P. Amatyakul, C. Vachiratienchai, and W. Siripunvaraporn, “Wsjointinv2d-mt-dcr: An efficient joint two-dimensional magnetotelluric and direct current resistivity inversion,” Computers & Geosciences, vol. 102, pp. 100–108, 2017.
  41. D. Singhal, T. Roy, H. Joshii, and A. Seth, “Evaluation of groundwater pollution potential in roorkee town, uttaranchal,” Journal of the Geological Society of India, vol. 62, pp. 465–477, 10 2003.

Summary

We haven't generated a summary for this paper yet.