Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward Generalizable Multiple Sclerosis Lesion Segmentation Models (2410.19623v1)

Published 25 Oct 2024 in eess.IV and cs.CV

Abstract: Automating Multiple Sclerosis (MS) lesion segmentation would be of great benefit in initial diagnosis as well as monitoring disease progression. Deep learning based segmentation models perform well in many domains, but the state-of-the-art in MS lesion segmentation is still suboptimal. Complementary to previous MS lesion segmentation challenges which focused on optimizing the performance on a single evaluation dataset, this study aims to develop models that generalize across diverse evaluation datasets, mirroring real-world clinical scenarios that involve varied scanners, settings, and patient cohorts. To this end, we used all high-quality publicly-available MS lesion segmentation datasets on which we systematically trained a state-of-the-art UNet++ architecture. The resulting models demonstrate consistent performance across the remaining test datasets (are generalizable), with larger and more heterogeneous datasets leading to better models. To the best of our knowledge, this represents the most comprehensive cross-dataset evaluation of MS lesion segmentation models to date using publicly available datasets. Additionally, explicitly enhancing dataset size by merging datasets improved model performance. Specifically, a model trained on the combined MSSEG2016-train, ISBI2015, and 3D-MR-MS datasets surpasses the winner of the MICCAI-2016 competition. Moreover, we demonstrate that the generalizability of our models also relies on our original use of quantile normalization on MRI intensities.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Liviu Badea (2 papers)
  2. Maria Popa (1 paper)

Summary

We haven't generated a summary for this paper yet.