Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image-Based Visual Servoing for Enhanced Cooperation of Dual-Arm Manipulation (2410.19432v3)

Published 25 Oct 2024 in cs.RO, cs.SY, and eess.SY

Abstract: The cooperation of a pair of robot manipulators is required to manipulate a target object without any fixtures. The conventional control methods coordinate the end-effector pose of each manipulator with that of the other using their kinematics and joint coordinate measurements. Yet, the manipulators' inaccurate kinematics and joint coordinate measurements can cause significant pose synchronization errors in practice. This paper thus proposes an image-based visual servoing approach for enhancing the cooperation of a dual-arm manipulation system. On top of the classical control, the visual servoing controller lets each manipulator use its carried camera to measure the image features of the other's marker and adapt its end-effector pose with the counterpart on the move. Because visual measurements are robust to kinematic errors, the proposed control can reduce the end-effector pose synchronization errors and the fluctuations of the interaction forces of the pair of manipulators on the move. Theoretical analyses have rigorously proven the stability of the closed-loop system. Comparative experiments on real robots have substantiated the effectiveness of the proposed control.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. A. Billard and D. Kragic, “Trends and challenges in robot manipulation,” Science, vol. 364, no. 6446, p. eaat8414, 2019.
  2. D. Rakita, B. Mutlu, M. Gleicher, and L. M. Hiatt, “Shared control–based bimanual robot manipulation,” Science Robotics, vol. 4, no. 30, p. eaaw0955, 2019.
  3. F. Krebs and T. Asfour, “A bimanual manipulation taxonomy,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11 031–11 038, 2022.
  4. F. Caccavale and M. Uchiyama, “Cooperative manipulation,” in Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds.   Berlin, Germany: Springer, 2016, pp. 989–1006.
  5. P. Chiacchio, S. Chiaverini, and B. Siciliano, “Direct and inverse kinematics for coordinated motion tasks of a two-manipulator system,” Journal of Dynamic Systems, Measurement, and Control, vol. 118, no. 4, pp. 691–697, 12 1996.
  6. P. B. g. Dohmann and S. Hirche, “Distributed control for cooperative manipulation with event-triggered communication,” IEEE Transactions on Robotics, vol. 36, no. 4, pp. 1038–1052, 2020.
  7. E. Shahriari, S. A. B. Birjandi, and S. Haddadin, “Passivity-based adaptive force-impedance control for modular multi-manual object manipulation,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2194–2201, 2022.
  8. I. D. Walker, R. A. Freeman, and S. I. Marcus, “Analysis of motion and internal loading of objects grasped by multiple cooperating manipulators,” The International Journal of Robotics Research, vol. 10, no. 4, pp. 396–409, 1991.
  9. Y. He, M. Wu, and S. Liu, “A cooperative optimization strategy for distributed multi-robot manipulation with obstacle avoidance and internal performance maximization,” Mechatronics, vol. 76, p. 102560, 2021.
  10. N. Dehio, J. Smith, D. L. Wigand, P. Mohammadi, M. Mistry, and J. J. Steil, “Enabling impedance-based physical human–multi–robot collaboration: Experiments with four torque-controlled manipulators,” The International Journal of Robotics Research, vol. 41, no. 1, pp. 68–84, 2022.
  11. Y. Zhang, X. Zhao, B. Tao, and H. Ding, “Multi-objective synchronization control for dual-robot interactive cooperation using nonlinear model predictive policy,” IEEE Transactions on Industrial Electronics, vol. 70, no. 1, pp. 582–593, 2023.
  12. D. Ortenzi, R. Muthusamy, A. Freddi, A. Monteriù, and V. Kyrki, “Dual-arm cooperative manipulation under joint limit constraints,” Robotics and Autonomous Systems, vol. 99, pp. 110–120, 2018.
  13. S. Tarbouriech, B. Navarro, P. Fraisse, A. Crosnier, A. Cherubini, and D. Sallé, “Dual-arm relative tasks performance using sparse kinematic control,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 6003–6009.
  14. M. Costanzo, G. De Maria, and C. Natale, “Tactile feedback enabling in-hand pivoting and internal force control for dual-arm cooperative object carrying,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11 466–11 473, 2022.
  15. Y. Gombo, A. Tiwari, M. Safwat, H. Chang, and S. Devasia, “Delayed self-reinforcement to reduce deformation during decentralized flexible-object transport,” IEEE Transactions on Robotics, vol. 40, pp. 999–1018, 2024.
  16. N. Vahrenkamp, C. Böge, K. Welke, T. Asfour, J. Walter, and R. Dillmann, “Visual servoing for dual arm motions on a humanoid robot,” in 2009 9th IEEE-RAS International Conference on Humanoid Robots, 2009, pp. 208–214.
  17. J. Qu, F. Zhang, Y. Fu, and S. Guo, “Multi-cameras visual servoing for dual-arm coordinated manipulation,” Robotica, vol. 35, no. 11, p. 2218–2237, 2017.
  18. R. Mebarki, V. Lippiello, and B. Siciliano, “Toward image-based visual servoing for cooperative aerial manipulation,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 6074–6080.
  19. F. Basile, F. Caccavale, P. Chiacchio, J. Coppola, and A. Marino, “A decentralized kinematic control architecture for collaborative and cooperative multi-arm systems,” Mechatronics, vol. 23, no. 8, pp. 1100–1112, 2013.
  20. T. Hatanaka, Y. Igarashi, M. Fujita, and M. W. Spong, “Passivity-based pose synchronization in three dimensions,” IEEE Transactions on Automatic Control, vol. 57, no. 2, pp. 360–375, 2012.
  21. F. Aghili, “Adaptive control of manipulators forming closed kinematic chain with inaccurate kinematic model,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 5, pp. 1544–1554, 2013.
  22. F. Chaumette and S. Hutchinson, “Visual servo control. i. basic approaches,” IEEE Robotics & Automation Magazine, vol. 13, no. 4, pp. 82–90, 2006.

Summary

We haven't generated a summary for this paper yet.