Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Variational problems with gradient constraints: $\textit{A priori}$ and $\textit{a posteriori}$ error identities (2410.18780v1)

Published 24 Oct 2024 in math.NA and cs.NA

Abstract: In this paper, on the basis of a (Fenchel) duality theory on the continuous level, we derive an $\textit{a posteriori}$ error identity for arbitrary conforming approximations of a primal formulation and a dual formulation of variational problems involving gradient constraints. In addition, on the basis of a (Fenchel) duality theory on the discrete level, we derive an $\textit{a priori}$ error identity that applies to the approximation of the primal formulation using the Crouzeix-Raviart element and to the approximation of the dual formulation using the Raviart-Thomas element, and leads to error decay rates that are optimal with respect to the regularity of a dual solution.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com