Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Case Study of Next Portfolio Prediction for Mutual Funds (2410.18098v1)

Published 8 Oct 2024 in q-fin.PM and cs.LG

Abstract: Mutual funds aim to generate returns above market averages. While predicting their future portfolio allocations can bring economic advantages, the task remains challenging and largely unexplored. To fill that gap, this work frames mutual fund portfolio prediction as a Next Novel Basket Recommendation (NNBR) task, focusing on predicting novel items in a fund's next portfolio. We create a comprehensive benchmark dataset using publicly available data and evaluate the performance of various recommender system models on the NNBR task. Our findings reveal that predicting novel items in mutual fund portfolios is inherently more challenging than predicting the entire portfolio or only repeated items. While state-of-the-art NBR models are outperformed by simple heuristics when considering both novel and repeated items together, autoencoder-based approaches demonstrate superior performance in predicting only new items. The insights gained from this study highlight the importance of considering domain-specific characteristics when applying recommender systems to mutual fund portfolio prediction. The performance gap between predicting the entire portfolio or repeated items and predicting novel items underscores the complexity of the NNBR task in this domain and the need for continued research to develop more robust and adaptable models for this critical financial application.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com