Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Many Faces of Easily Covered Polytopes (2410.17811v1)

Published 23 Oct 2024 in math.MG

Abstract: Assume that $rB_{2}{n} \subset P$ for some polytope $P \subset \mathbb{R}n$, where $r \in (\frac{1}{2},1]$. Denote by $\mathcal{F}$ the set of facets of $P$, and by $N=N(P,B_2n)$ the covering number of $P$ by the Euclidean unit ball $B_2n$. We prove that if $\log N \le\frac{n}{8}$, then [ |\mathcal{F}| \ge \left( \frac{1}{ 2\left(1 - r \sqrt{1-\frac{4\log N}{n}}\right) } \right){\frac{n-1}{2}}. ]

Summary

We haven't generated a summary for this paper yet.