CogSteer: Cognition-Inspired Selective Layer Intervention for Efficiently Steering Large Language Models (2410.17714v3)
Abstract: LLMs achieve remarkable performance through pretraining on extensive data. This enables efficient adaptation to diverse downstream tasks. However, the lack of interpretability in their underlying mechanisms limits the ability to effectively steer LLMs for specific applications. In this work, we investigate the intrinsic mechanisms of LLMs from a cognitive perspective using eye movement measures. Specifically, we analyze the layer-wise correlation between human cognitive indicators and LLM representations. Building on these insights, we propose a heuristic approach for selecting the optimal steering layer to modulate LLM semantics. To this end, we introduce an efficient selective layer intervention based on prominent parameter-efficient fine-tuning methods, which conventionally adjust either all layers or only the final layer. Additionally, we present an implicit layer contrastive intervention during inference to steer LLMs away from toxic outputs. Extensive experiments on natural language understanding, reasoning, and generation tasks, conducted on GPT-2, Llama2-7B, and Mistral-7B, demonstrate the effectiveness and efficiency of our approach. As a model-agnostic framework, it enhances the interpretability of LLMs while improving efficiency for safe deployment.