Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Process Supervision-Guided Policy Optimization for Code Generation (2410.17621v2)

Published 23 Oct 2024 in cs.AI

Abstract: Reinforcement learning (RL) with unit test feedback has enhanced LLMs' (LLMs) code generation, but relies on sparse rewards provided only after complete code evaluation, limiting learning efficiency and incremental improvements. When generated code fails all unit tests, no learning signal is received, hindering progress on complex tasks. To address this, we propose a Process Reward Model (PRM) that delivers dense, line-level feedback on code correctness during generation, mimicking human code refinement and providing immediate guidance. We explore various strategies for training PRMs and integrating them into the RL framework, finding that using PRMs both as dense rewards and for value function initialization significantly boosts performance. Our experimental results also highlight the effectiveness of PRMs in enhancing RL-driven code generation, especially for long-horizon scenarios.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com