Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Morita theory for dynamical von Neumann algebras (2410.17407v3)

Published 22 Oct 2024 in math.OA and math.QA

Abstract: Given a locally compact quantum group $\mathbb{G}$ and two $\mathbb{G}$-$W*$-algebras $\alpha: A\curvearrowleft \mathbb{G}$ and $\beta: B\curvearrowleft \mathbb{G}$, we study the notion of equivariant $W*$-Morita equivalence $(A, \alpha)\sim_{\mathbb{G}} (B, \beta)$, which is an equivariant version of Rieffel's notion of $W*$-Morita equivalence. We prove that important dynamical properties of $\mathbb{G}$-$W*$-algebras, such as (inner) amenability, are preserved under equivariant Morita equivalence. For a coideal von Neumann algebra $L\infty(\mathbb{K}\backslash \mathbb{G})\subseteq L\infty(\mathbb{G})$ with dual coideal von Neumann algebra $L\infty(\check{\mathbb{K}})\subseteq L\infty(\check{\mathbb{G}})$, we use a natural $\check{\mathbb{G}}$-$W*$-Morita equivalence $L\infty(\mathbb{K}\backslash \mathbb{G})\rtimes_\Delta \mathbb{G} \sim_{\check{\mathbb{G}}} L\infty(\check{\mathbb{K}})$ to relate dynamical properties of $L\infty(\mathbb{K}\backslash \mathbb{G})$ with dynamical properties of $L\infty(\check{\mathbb{K}})$. We use this to refine some recent results established by Anderson-Sackaney and Khosravi. This refinement allows us to answer a question of Kalantar, Kasprzak, Skalski and Vergnioux, namely that for $\mathbb{H}$ a closed quantum subgroup of the compact quantum group $\mathbb{G}$, coamenability of $\mathbb{H}\backslash \mathbb{G}$ and relative amenability of $\ell\infty(\check{\mathbb{H}})$ in $\ell\infty(\check{\mathbb{G}})$ are equivalent. Moreover, if $\mathbb{G}$ is compact, we study the relation between $\mathbb{G}$-$W*$-Morita equivalence of $(A, \alpha)$ and $(B, \beta)$ and $\mathbb{G}$-$C*$-Morita equivalence of the associated $\mathbb{G}$-$C*$-algebras $(\mathcal{R}(A), \alpha)$ and $(\mathcal{R}(B), \beta)$ of regular elements.

Summary

We haven't generated a summary for this paper yet.