Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Controlled Low-Rank Adaptation with Subspace Regularization for Continued Training on Large Language Models (2410.16801v2)

Published 22 Oct 2024 in cs.CL and cs.AI

Abstract: LLMs exhibit remarkable capabilities in natural language processing but face catastrophic forgetting when learning new tasks, where adaptation to a new domain leads to a substantial decline in performance on previous tasks. In this paper, we propose Controlled LoRA (CLoRA), a sub-space regularization method on LoRA structure. Aiming to reduce the scale of output change while introduce minimal constraint on model capacity, CLoRA imposes constraint on the direction of updating matrix's null space. Experimental results on one-stage LLM finetuning tasks and continual learning settings highlight the superority of CLoRA as a effective parameter efficient finetuning method with catastrophic forgetting mitigating.Further investigation for model parameters indicates that CLoRA effectively balances the trade-off between model capacity and degree of forgetting.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets